S'identifier

It is far more common for collisions to occur in two dimensions; that is, the initial velocity vectors are neither parallel nor antiparallel to each other. Let's see what complications arise from this. The first idea is that momentum is a vector. Like all vectors, it can be expressed as a sum of perpendicular components (usually, though not always, an x-component and a y-component, and a z-component if necessary). Thus, when the statement of conservation of momentum is written for a problem, the momentum vectors can be, and usually will be, expressed in component form. Conservation of momentum is valid in each direction independently.

The method for solving a two-dimensional (or even three-dimensional) conservation of momentum problem is generally the same as the method for solving a one-dimensional problem, except that the momentum is conserved in both (or all three) dimensions simultaneously. The following steps are carried out to solve a momentum conservation problem in multiple dimensions:

  1. Identify the closed system.
  2. Write down the equation representing the conservation of momentum in the x-direction, and solve it for the desired quantity. When calculating a vector quantity (velocity, usually), this will give the x-component of the vector.
  3. Write down the equation representing the conservation of momentum in the y-direction, and solve. This will give the y-component of the vector quantity.
  4. Similar to calculating for a vector quantity, apply the Pythagorean theorem to calculate the magnitude, using the results of steps 2 and 3.

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as seen in medical applications of nuclear physics and particle physics. For instance, Ernest Rutherford discovered the nature of the atomic nucleus from such experiments.

This text is adapted from Openstax, University Physics Volume 1, Section 9.5: Collisions in Multiple Dimensions.

Tags

Keyword Extraction CollisionMultiple DimensionsMomentum VectorConservation Of MomentumX componentY componentPythagorean TheoremTwo dimensional CollisionSubatomic ParticlesNuclear PhysicsParticle PhysicsErnest RutherfordAtomic Nucleus

Du chapitre 9:

article

Now Playing

9.11 : Collisions in Multiple Dimensions: Introduction

Quantité de mouvement, impulsion et collisions

4.2K Vues

article

9.1 : Quantité de mouvement

Quantité de mouvement, impulsion et collisions

13.1K Vues

article

9.2 : Force et quantité de mouvement

Quantité de mouvement, impulsion et collisions

12.4K Vues

article

9.3 : Impulsion

Quantité de mouvement, impulsion et collisions

15.4K Vues

article

9.4 : Théorème de la quantité de mouvement

Quantité de mouvement, impulsion et collisions

10.5K Vues

article

9.5 : Conservation de la quantité de mouvement : introduction

Quantité de mouvement, impulsion et collisions

13.9K Vues

article

9.6 : Conservation de la quantité de mouvement : résoudre les problèmes

Quantité de mouvement, impulsion et collisions

9.3K Vues

article

9.7 : Types de collisions - I

Quantité de mouvement, impulsion et collisions

6.2K Vues

article

9.8 : Types de collisions - II

Quantité de mouvement, impulsion et collisions

6.4K Vues

article

9.9 : Collisions élastiques : introduction

Quantité de mouvement, impulsion et collisions

9.4K Vues

article

9.10 : Collisions élastiques : cas d'étude

Quantité de mouvement, impulsion et collisions

10.3K Vues

article

9.12 : Collisions à plusieurs dimensions : résoudre les problèmes

Quantité de mouvement, impulsion et collisions

3.3K Vues

article

9.13 : Centre d'inertie : introduction

Quantité de mouvement, impulsion et collisions

11.0K Vues

article

9.14 : Centre d'inertie : résoudre les problèmes

Quantité de mouvement, impulsion et collisions

5.9K Vues

article

9.15 : Énergie potentielle gravitationnelle pour les objets étendus

Quantité de mouvement, impulsion et collisions

1.3K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.