JoVE Logo

Войдите в систему

It is far more common for collisions to occur in two dimensions; that is, the initial velocity vectors are neither parallel nor antiparallel to each other. Let's see what complications arise from this. The first idea is that momentum is a vector. Like all vectors, it can be expressed as a sum of perpendicular components (usually, though not always, an x-component and a y-component, and a z-component if necessary). Thus, when the statement of conservation of momentum is written for a problem, the momentum vectors can be, and usually will be, expressed in component form. Conservation of momentum is valid in each direction independently.

The method for solving a two-dimensional (or even three-dimensional) conservation of momentum problem is generally the same as the method for solving a one-dimensional problem, except that the momentum is conserved in both (or all three) dimensions simultaneously. The following steps are carried out to solve a momentum conservation problem in multiple dimensions:

  1. Identify the closed system.
  2. Write down the equation representing the conservation of momentum in the x-direction, and solve it for the desired quantity. When calculating a vector quantity (velocity, usually), this will give the x-component of the vector.
  3. Write down the equation representing the conservation of momentum in the y-direction, and solve. This will give the y-component of the vector quantity.
  4. Similar to calculating for a vector quantity, apply the Pythagorean theorem to calculate the magnitude, using the results of steps 2 and 3.

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as seen in medical applications of nuclear physics and particle physics. For instance, Ernest Rutherford discovered the nature of the atomic nucleus from such experiments.

This text is adapted from Openstax, University Physics Volume 1, Section 9.5: Collisions in Multiple Dimensions.

Теги

Keyword Extraction CollisionMultiple DimensionsMomentum VectorConservation Of MomentumX componentY componentPythagorean TheoremTwo dimensional CollisionSubatomic ParticlesNuclear PhysicsParticle PhysicsErnest RutherfordAtomic Nucleus

Из главы 9:

article

Now Playing

9.11 : Collisions in Multiple Dimensions: Introduction

Linear Momentum, Impulse and Collisions

4.4K Просмотры

article

9.1 : Линейный импульс

Linear Momentum, Impulse and Collisions

13.5K Просмотры

article

9.2 : Сила и импульс

Linear Momentum, Impulse and Collisions

14.5K Просмотры

article

9.3 : Импульс

Linear Momentum, Impulse and Collisions

17.5K Просмотры

article

9.4 : Теорема импульс-импульс

Linear Momentum, Impulse and Collisions

10.9K Просмотры

article

9.5 : Сохранение импульса: введение

Linear Momentum, Impulse and Collisions

14.3K Просмотры

article

9.6 : Сохранение импульса: решение проблем

Linear Momentum, Impulse and Collisions

9.6K Просмотры

article

9.7 : Типы столкновений - I

Linear Momentum, Impulse and Collisions

6.5K Просмотры

article

9.8 : Типы столкновений - II

Linear Momentum, Impulse and Collisions

6.7K Просмотры

article

9.9 : Упругие столкновения: введение

Linear Momentum, Impulse and Collisions

11.4K Просмотры

article

9.10 : Упругие столкновения: тематическое исследование

Linear Momentum, Impulse and Collisions

12.3K Просмотры

article

9.12 : Многомерные столкновения: решение проблем

Linear Momentum, Impulse and Collisions

3.5K Просмотры

article

9.13 : Центр масс: введение

Linear Momentum, Impulse and Collisions

13.1K Просмотры

article

9.14 : Значение центра масс

Linear Momentum, Impulse and Collisions

6.1K Просмотры

article

9.15 : Гравитационная потенциальная энергия для протяженных объектов

Linear Momentum, Impulse and Collisions

1.3K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены