S'identifier

We previously discussed angular velocity for uniform circular motion, however not all motion is uniform. Envision an ice skater spinning with their arms outstretched; when they pull their arms inward, their angular velocity increases. Additionally, think about a computer's hard disk slowing to a halt as the angular velocity decreases. The faster the change in angular velocity, the greater the angular acceleration. The instantaneous angular acceleration is defined as the derivative of angular velocity with respect to time. The units of angular acceleration are (rad/s)/s, or radians per second squared.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way that we relate the tangential speed to the angular velocity. Thus, tangential acceleration is the radius times the angular acceleration.

The following points represent a problem-solving strategy that can be applied to rotational kinematics:

  1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.
  3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).
  4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in terms of a translational analog. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions complete with units. Be sure to use units of radians for angles.
  5. Finally, check the answer to see if it is reasonable.

This text is adapted from Openstax, University Physics Volume 1, Section 10.1: Rotational Variables.

Tags
Angular VelocityAngular AccelerationTangential AccelerationRotational KinematicsRadians Per Second SquaredProblem solving StrategyTranslational Analog

Du chapitre 10:

article

Now Playing

10.2 : Angular Velocity and Acceleration

Rotation et systèmes matériels

8.4K Vues

article

10.1 : Vitesse angulaire et déplacement

Rotation et systèmes matériels

11.5K Vues

article

10.3 : Mouvement de rotation uniformément varié - I

Rotation et systèmes matériels

6.4K Vues

article

10.4 : Mouvement de rotation uniformément varié - II

Rotation et systèmes matériels

5.7K Vues

article

10.5 : Établir une relation entre le mouvement linéaire et le mouvement angulaire - I

Rotation et systèmes matériels

6.2K Vues

article

10.6 : Établir une relation entre le mouvement linéaire et le mouvement angulaire - II

Rotation et systèmes matériels

5.1K Vues

article

10.7 : Moment d'inertie

Rotation et systèmes matériels

8.7K Vues

article

10.8 : Moment d'inertie et énergie cinétique de rotation

Rotation et systèmes matériels

6.9K Vues

article

10.9 : Moment d'inertie : calculs

Rotation et systèmes matériels

6.4K Vues

article

10.10 : Moment d'inertie d'un solide composé

Rotation et systèmes matériels

5.8K Vues

article

10.11 : Théorème des axes parallèles (théorème de Huygens)

Rotation et systèmes matériels

6.1K Vues

article

10.12 : Théorème de l’axe perpendiculaire

Rotation et systèmes matériels

2.4K Vues

article

10.13 : Transformation vectorielle dans les systèmes de coordonnées en rotation

Rotation et systèmes matériels

1.2K Vues

article

10.14 : Coriolis Force

Rotation et systèmes matériels

2.7K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.