Accedi

We previously discussed angular velocity for uniform circular motion, however not all motion is uniform. Envision an ice skater spinning with their arms outstretched; when they pull their arms inward, their angular velocity increases. Additionally, think about a computer's hard disk slowing to a halt as the angular velocity decreases. The faster the change in angular velocity, the greater the angular acceleration. The instantaneous angular acceleration is defined as the derivative of angular velocity with respect to time. The units of angular acceleration are (rad/s)/s, or radians per second squared.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way that we relate the tangential speed to the angular velocity. Thus, tangential acceleration is the radius times the angular acceleration.

The following points represent a problem-solving strategy that can be applied to rotational kinematics:

  1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.
  3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).
  4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in terms of a translational analog. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions complete with units. Be sure to use units of radians for angles.
  5. Finally, check the answer to see if it is reasonable.

This text is adapted from Openstax, University Physics Volume 1, Section 10.1: Rotational Variables.

Tags
Angular VelocityAngular AccelerationTangential AccelerationRotational KinematicsRadians Per Second SquaredProblem solving StrategyTranslational Analog

Dal capitolo 10:

article

Now Playing

10.2 : Angular Velocity and Acceleration

Rotation and Rigid Bodies

8.4K Visualizzazioni

article

10.1 : Velocità angolare e spostamento

Rotation and Rigid Bodies

11.6K Visualizzazioni

article

10.3 : Rotazione con accelerazione angolare costante - I

Rotation and Rigid Bodies

6.4K Visualizzazioni

article

10.4 : Rotazione con accelerazione angolare costante - II

Rotation and Rigid Bodies

5.7K Visualizzazioni

article

10.5 : Relazione tra quantità angolari e lineari - I

Rotation and Rigid Bodies

6.2K Visualizzazioni

article

10.6 : Relazione tra grandezze angolari e lineari - II

Rotation and Rigid Bodies

5.1K Visualizzazioni

article

10.7 : Momento d'inerzia

Rotation and Rigid Bodies

8.8K Visualizzazioni

article

10.8 : Momento d'inerzia ed energia cinetica rotazionale

Rotation and Rigid Bodies

6.9K Visualizzazioni

article

10.9 : Momento d'inerzia: calcoli

Rotation and Rigid Bodies

6.4K Visualizzazioni

article

10.10 : Momento d'inerzia degli oggetti composti

Rotation and Rigid Bodies

5.8K Visualizzazioni

article

10.11 : Teorema dell'asse parallelo

Rotation and Rigid Bodies

6.2K Visualizzazioni

article

10.12 : Teorema dell'asse perpendicolare

Rotation and Rigid Bodies

2.4K Visualizzazioni

article

10.13 : Trasformazione vettoriale in sistemi di coordinate rotanti

Rotation and Rigid Bodies

1.2K Visualizzazioni

article

10.14 : Forza di Coriolis

Rotation and Rigid Bodies

2.7K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati