S'identifier

Despite the protective membrane that separates a cell from the environment, cells need the ability to detect and respond to environmental changes. Additionally, cells often need to communicate with one another. Unicellular and multicellular organisms use a variety of cell signaling mechanisms to communicate with the environment.

Cells respond to many types of information, often through receptor proteins positioned on the membrane. For example, skin cells respond to and transmit touch information, while photoreceptors in the retina can detect light. Most cells, however, have evolved to respond to chemical signals, including hormones, neurotransmitters, and many other types of signaling molecules. Cells can even coordinate different responses elicited by the same signaling molecule.

Typically, cell signaling involves three steps: (1) reception, (2) transduction, and (3) response. In most signal reception, a membrane-impermeable molecule, or ligand, causes a change in a membrane receptor; however, some signaling molecules, such as hormones, can cross the membrane to reach their internal receptors. The membrane receptor can then send this signal to intracellular messengers, transducing the message into a cellular response. This intracellular response may include changes in transcription, translation, protein activation, and other responses.

Unicellular organisms such as bacteria can use a type of cell signaling called quorum sensing to detect their concentration in a colony and generate coordinated responses. Eukaryotic cells can release ligands that target the same cell that produced the signal (autocrine signaling) or neighboring cells (paracrine signaling). Signals can even be sent over long distances, as in the case of some hormones, and produce responses in distant cells, called endocrine signaling. Contact-dependent signaling describes physical pathways created between neighboring cells through which cytoplasmic signals can rapidly pass. Nervous system cells can generate rapid responses through a specialization of cell signaling called synaptic signaling.

Tags
Cell SignalingReceptor ProteinsEnvironmental ChangesUnicellular OrganismsMulticellular OrganismsChemical SignalsHormonesNeurotransmittersLigandTransductionIntracellular MessengersQuorum SensingAutocrine SignalingParacrine SignalingEndocrine SignalingSynaptic Signaling

Du chapitre 21:

article

Now Playing

21.1 : Overview of Cell Signaling

Principles of Cell Signaling

19.4K Vues

article

21.2 : Types de molécules de signalisation

Principles of Cell Signaling

9.7K Vues

article

21.3 : Types de récepteurs : Récepteurs de surface cellulaire

Principles of Cell Signaling

16.1K Vues

article

21.4 : Types de récepteurs : Récepteurs internes

Principles of Cell Signaling

17.2K Vues

article

21.5 : Assemblage de complexes de signalisation

Principles of Cell Signaling

5.6K Vues

article

21.6 : Interactions entre les voies de signalisation

Principles of Cell Signaling

6.1K Vues

article

21.7 : Amplification des signaux via des seconds messagers

Principles of Cell Signaling

6.5K Vues

article

21.8 : Amplification de signaux via une cascade enzymatique

Principles of Cell Signaling

7.9K Vues

article

21.9 : Diversité des réponses de signalisation cellulaire

Principles of Cell Signaling

6.1K Vues

article

21.10 : Boucles de rétroaction de signalisation cellulaire

Principles of Cell Signaling

6.1K Vues

article

21.11 : Signalisation cellulaire chez les plantes

Principles of Cell Signaling

5.2K Vues

article

21.12 : Hormones végétales

Principles of Cell Signaling

4.7K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.