JoVE Logo

로그인

Despite the protective membrane that separates a cell from the environment, cells need the ability to detect and respond to environmental changes. Additionally, cells often need to communicate with one another. Unicellular and multicellular organisms use a variety of cell signaling mechanisms to communicate with the environment.

Cells respond to many types of information, often through receptor proteins positioned on the membrane. For example, skin cells respond to and transmit touch information, while photoreceptors in the retina can detect light. Most cells, however, have evolved to respond to chemical signals, including hormones, neurotransmitters, and many other types of signaling molecules. Cells can even coordinate different responses elicited by the same signaling molecule.

Typically, cell signaling involves three steps: (1) reception, (2) transduction, and (3) response. In most signal reception, a membrane-impermeable molecule, or ligand, causes a change in a membrane receptor; however, some signaling molecules, such as hormones, can cross the membrane to reach their internal receptors. The membrane receptor can then send this signal to intracellular messengers, transducing the message into a cellular response. This intracellular response may include changes in transcription, translation, protein activation, and other responses.

Unicellular organisms such as bacteria can use a type of cell signaling called quorum sensing to detect their concentration in a colony and generate coordinated responses. Eukaryotic cells can release ligands that target the same cell that produced the signal (autocrine signaling) or neighboring cells (paracrine signaling). Signals can even be sent over long distances, as in the case of some hormones, and produce responses in distant cells, called endocrine signaling. Contact-dependent signaling describes physical pathways created between neighboring cells through which cytoplasmic signals can rapidly pass. Nervous system cells can generate rapid responses through a specialization of cell signaling called synaptic signaling.

Tags

Cell SignalingReceptor ProteinsEnvironmental ChangesUnicellular OrganismsMulticellular OrganismsChemical SignalsHormonesNeurotransmittersLigandTransductionIntracellular MessengersQuorum SensingAutocrine SignalingParacrine SignalingEndocrine SignalingSynaptic Signaling

장에서 21:

article

Now Playing

21.1 : Overview of Cell Signaling

Principles of Cell Signaling

19.8K Views

article

21.2 : 신호 분자의 종류

Principles of Cell Signaling

10.0K Views

article

21.3 : 수용체의 종류: 세포 표면 수용체

Principles of Cell Signaling

16.4K Views

article

21.4 : 수용체의 종류: 내부 수용체

Principles of Cell Signaling

19.9K Views

article

21.5 : 신호전달 복합체의 조립

Principles of Cell Signaling

5.6K Views

article

21.6 : 신호 경로 간의 상호 작용

Principles of Cell Signaling

6.2K Views

article

21.7 : 두 번째 메신저를 통한 신호 증폭

Principles of Cell Signaling

6.6K Views

article

21.8 : Enzymatic Cascade를 통한 신호 증폭

Principles of Cell Signaling

8.2K Views

article

21.9 : 세포 신호 반응의 다양성

Principles of Cell Signaling

6.3K Views

article

21.10 : 세포 신호 피드백 루프

Principles of Cell Signaling

6.2K Views

article

21.11 : 식물의 세포 신호 전달

Principles of Cell Signaling

5.4K Views

article

21.12 : 식물 호르몬

Principles of Cell Signaling

4.9K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유