S'identifier

The mean absolute deviation is also a measure of the variability of data in a sample. It is the absolute value of the average difference between the data values and the mean.

Let us consider a dataset containing the number of unsold cupcakes in five shops: 10, 15, 8, 7, and 10. Initially, calculate the sample mean. Then calculate the deviation, or the difference, between each data value and the mean. Next, the absolute values of these deviations are added and divided by the sample size to obtain the mean absolute deviation.

In the above data set, the obtained mean is 10. The deviations from the mean are 0, 5,-2,-3, and 0. The absolute values of these deviations are 0,5,2,3, and 0. Upon adding these, we get a sum of 10. Upon dividing ten by the sample size, we get a value of 5, which is the mean absolute deviation.

It is noteworthy that the mean absolute deviation is computed using absolute values, so it involves using a non-algebraic operation. Hence, the mean absolute deviation cannot be used in inferential statistics, which involves using algebraic operations.

Furthermore, the mean absolute deviation of a sample is biased, as it doesn’t adequately represent the mean absolute deviation of a population.

Tags
Mean Absolute DeviationVariabilityData SampleAbsolute ValueAverage DifferenceDeviationsSample MeanUnsold CupcakesStatistical MeasureInferential StatisticsNon algebraic OperationBiased Sample Statistic

Du chapitre 4:

article

Now Playing

4.11 : Mean Absolute Deviation

Measures of Variation

2.5K Vues

article

4.1 : Qu’est-ce que la variation ?

Measures of Variation

10.9K Vues

article

4.2 : Gamme

Measures of Variation

10.8K Vues

article

4.3 : Écart type

Measures of Variation

15.4K Vues

article

4.4 : Erreur type de la moyenne

Measures of Variation

5.4K Vues

article

4.5 : Calcul de l’écart-type

Measures of Variation

7.0K Vues

article

4.6 : Variance

Measures of Variation

9.1K Vues

article

4.7 : Coefficient de variation

Measures of Variation

3.5K Vues

article

4.8 : Règle empirique de l’intervalle pour interpréter l’écart-type

Measures of Variation

8.7K Vues

article

4.9 : Méthode empirique d’interprétation de l’écart-type

Measures of Variation

5.0K Vues

article

4.10 : Théorème de Tchebychev pour interpréter l’écart-type

Measures of Variation

4.0K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.