JoVE Logo

S'identifier

For a system of charges, it is easy to calculate the system's potential because potential is a scalar quantity. However, in some instances where calculating the electric field is more straightforward than finding the potential, the electric field is used to calculate the system's potential. For a positive charge, the electric field is radially outward, and the potential is positive at any finite distance from the positive charge. In such an electric field, the motion away from the positive charge along the direction of the electric field lowers the value of the electric potential. However, if the movement is toward the positive charge, opposite to the direction of the electric field, then the electric potential increases. Alternatively, for an electric field of a negative charge, movement away from the negative charge increases the electric potential.

The energy per electron is very small in macroscopic situations, a tiny fraction of a joule, but, on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny fraction of a joule can be significant enough for these particles to destroy organic molecules and harm living tissue. The particle may do its damage by direct collision, or it may create harmful X-rays, which can also inflict damage. It is helpful to have an energy unit related to submicroscopic effects.

An electron accelerated through a potential difference of 1 V is given energy of 1 eV. It follows that an electron accelerated through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron energy of 100,000 eV (100 keV), and so on. Similarly, an ion with a double positive charge accelerated through 100 V gains 200 eV of energy. These simple relationships between accelerating voltage and particle charges make the electron volt a simple and convenient energy unit in such circumstances. The electron volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear binding energies are among the quantities often expressed in electron volts. Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per event and can, thus, produce significant biological damage.

Tags

Electric PotentialElectric FieldPositive ChargeNegative ChargeEnergy Per ElectronSubmicroscopic ScaleElectron VoltPotential DifferenceParticle EnergyNuclear Decay EnergiesBiological DamageX rays

Du chapitre 24:

article

Now Playing

24.5 : Finding Electric Potential From Electric Field

Electric Potential

3.9K Vues

article

24.1 : Potentiel électrique Énergie

Electric Potential

5.4K Vues

article

24.2 : Énergie potentielle électrique dans un champ électrique uniforme

Electric Potential

4.4K Vues

article

24.3 : Énergie potentielle électrique des charges en deux points

Electric Potential

4.3K Vues

article

24.4 : Potentiel électrique et différence de potentiel

Electric Potential

4.2K Vues

article

24.6 : Calculs du potentiel électrique I

Electric Potential

1.8K Vues

article

24.7 : Calculs du potentiel électrique II

Electric Potential

1.6K Vues

article

24.8 : Surfaces équipotentielles et lignes de champ

Electric Potential

3.5K Vues

article

24.9 : Surfaces équipotentielles et conducteurs

Electric Potential

3.3K Vues

article

24.10 : Détermination du champ électrique à partir du potentiel électrique

Electric Potential

4.3K Vues

article

24.11 : Équation de Poisson et de Laplace

Electric Potential

2.5K Vues

article

24.12 : Groupe électrogène Van de Graaff

Electric Potential

1.6K Vues

article

24.13 : Énergie associée à une distribution de charge

Electric Potential

1.4K Vues

article

24.14 : Conditions limites électrostatiques

Electric Potential

379 Vues

article

24.15 : Deuxième théorème d’unicité

Electric Potential

935 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.