Accedi

For a system of charges, it is easy to calculate the system's potential because potential is a scalar quantity. However, in some instances where calculating the electric field is more straightforward than finding the potential, the electric field is used to calculate the system's potential. For a positive charge, the electric field is radially outward, and the potential is positive at any finite distance from the positive charge. In such an electric field, the motion away from the positive charge along the direction of the electric field lowers the value of the electric potential. However, if the movement is toward the positive charge, opposite to the direction of the electric field, then the electric potential increases. Alternatively, for an electric field of a negative charge, movement away from the negative charge increases the electric potential.

The energy per electron is very small in macroscopic situations, a tiny fraction of a joule, but, on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny fraction of a joule can be significant enough for these particles to destroy organic molecules and harm living tissue. The particle may do its damage by direct collision, or it may create harmful X-rays, which can also inflict damage. It is helpful to have an energy unit related to submicroscopic effects.

An electron accelerated through a potential difference of 1 V is given energy of 1 eV. It follows that an electron accelerated through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron energy of 100,000 eV (100 keV), and so on. Similarly, an ion with a double positive charge accelerated through 100 V gains 200 eV of energy. These simple relationships between accelerating voltage and particle charges make the electron volt a simple and convenient energy unit in such circumstances. The electron volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear binding energies are among the quantities often expressed in electron volts. Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per event and can, thus, produce significant biological damage.

Tags
Electric PotentialElectric FieldPositive ChargeNegative ChargeEnergy Per ElectronSubmicroscopic ScaleElectron VoltPotential DifferenceParticle EnergyNuclear Decay EnergiesBiological DamageX rays

Dal capitolo 24:

article

Now Playing

24.5 : Finding Electric Potential From Electric Field

Electric Potential

3.8K Visualizzazioni

article

24.1 : Energia potenziale elettrica

Electric Potential

5.2K Visualizzazioni

article

24.2 : Energia potenziale elettrica in un campo elettrico uniforme

Electric Potential

4.3K Visualizzazioni

article

24.3 : Energia potenziale elettrica delle cariche a due punti

Electric Potential

4.2K Visualizzazioni

article

24.4 : Potenziale elettrico e differenza di potenziale

Electric Potential

4.1K Visualizzazioni

article

24.6 : Calcoli del potenziale elettrico I

Electric Potential

1.8K Visualizzazioni

article

24.7 : Calcoli del potenziale elettrico II

Electric Potential

1.5K Visualizzazioni

article

24.8 : Superfici equipotenziali e linee di campo

Electric Potential

3.5K Visualizzazioni

article

24.9 : Superfici equipotenziali e conduttori

Electric Potential

3.2K Visualizzazioni

article

24.10 : Determinazione del campo elettrico dal potenziale elettrico

Electric Potential

4.3K Visualizzazioni

article

24.11 : Equazione di Poisson e Laplace

Electric Potential

2.4K Visualizzazioni

article

24.12 : Generatore di Van de Graaff

Electric Potential

1.6K Visualizzazioni

article

24.13 : Energia associata a una distribuzione di carica

Electric Potential

1.4K Visualizzazioni

article

24.14 : Condizioni al contorno elettrostatiche

Electric Potential

347 Visualizzazioni

article

24.15 : Secondo teorema di unicità

Electric Potential

912 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati