JoVE Logo

S'identifier

31.6 : Energy Stored In A Coaxial Cable

A coaxial cable consists of a central copper conductor used for transmitting signals, followed by an insulator shield, a metallic braided mesh that prevents signal interference, and a plastic layer that encases the entire assembly.

In the simplest form, a coaxial cable can be represented by two long hollow concentric cylinders in which the current flows in opposite directions. The magnetic field inside and outside the coaxial cable is determined by using Ampère's law. The magnetic field inside the inner conductor is zero, as no current is enclosed in that region. The magnetic field outside the cable is also zero because the oppositely flowing currents in the two concentric cylinders cancel each other, giving zero net currents. The magnetic field exists only in the shell region between the two conductors and is used to obtain the expression for the energy density of the magnetic field.

Equation1

All of the cable's magnetic energy is stored between the two conductors. The magnetic energy is calculated by an integral of the magnetic energy density times the differential volume over the cylindrical shell.

Equation2

The magnetic energy per unit length is directly proportional to the square of the current. The total energy can also be expressed in terms of the self-inductance of the coaxial cable.

Equation3

Equating these two expressions results in an expression for the self-inductance per unit length for a coaxial cable, which depends only on the inner and outer radii of the cable.

Equation4

Inductance can be increased by increasing the outer radius or by decreasing the inner radius.

In the limit, when the inner radius reaches the outer radius, the inductance becomes zero, and the cable is no longer coaxial.

Tags

Coaxial CableCopper ConductorSignal TransmissionInsulator ShieldMetallic Braided MeshMagnetic FieldAmp re s LawEnergy DensityMagnetic EnergySelf inductanceInductanceCylindrical ShellCurrent FlowEnergy Storage

Du chapitre 31:

article

Now Playing

31.6 : Energy Stored In A Coaxial Cable

Inductance

1.4K Vues

article

31.1 : Inductance mutuelle

Inductance

2.3K Vues

article

31.2 : Auto-inductance

Inductance

2.3K Vues

article

31.3 : Calcul de l’auto-inductance

Inductance

289 Vues

article

31.4 : Inductances

Inductance

5.4K Vues

article

31.5 : Énergie dans un champ magnétique

Inductance

2.2K Vues

article

31.7 : RL Circuits

Inductance

2.4K Vues

article

31.8 : Croissance et décroissance du courant dans les circuits RL

Inductance

3.7K Vues

article

31.9 : Comparaison entre les circuits RL et RC

Inductance

3.8K Vues

article

31.10 : LC Circuits

Inductance

2.4K Vues

article

31.11 : Oscillations dans un circuit LC

Inductance

2.2K Vues

article

31.12 : Circuits de la série RLC

Inductance

2.9K Vues

article

31.13 : Circuit RLC en tant qu’oscillateur amorti

Inductance

852 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.