Accedi

A coaxial cable consists of a central copper conductor used for transmitting signals, followed by an insulator shield, a metallic braided mesh that prevents signal interference, and a plastic layer that encases the entire assembly.

In the simplest form, a coaxial cable can be represented by two long hollow concentric cylinders in which the current flows in opposite directions. The magnetic field inside and outside the coaxial cable is determined by using Ampère's law. The magnetic field inside the inner conductor is zero, as no current is enclosed in that region. The magnetic field outside the cable is also zero because the oppositely flowing currents in the two concentric cylinders cancel each other, giving zero net currents. The magnetic field exists only in the shell region between the two conductors and is used to obtain the expression for the energy density of the magnetic field.

Equation1

All of the cable's magnetic energy is stored between the two conductors. The magnetic energy is calculated by an integral of the magnetic energy density times the differential volume over the cylindrical shell.

Equation2

The magnetic energy per unit length is directly proportional to the square of the current. The total energy can also be expressed in terms of the self-inductance of the coaxial cable.

Equation3

Equating these two expressions results in an expression for the self-inductance per unit length for a coaxial cable, which depends only on the inner and outer radii of the cable.

Equation4

Inductance can be increased by increasing the outer radius or by decreasing the inner radius.

In the limit, when the inner radius reaches the outer radius, the inductance becomes zero, and the cable is no longer coaxial.

Tags

Coaxial CableCopper ConductorSignal TransmissionInsulator ShieldMetallic Braided MeshMagnetic FieldAmp re s LawEnergy DensityMagnetic EnergySelf inductanceInductanceCylindrical ShellCurrent FlowEnergy Storage

Dal capitolo 31:

article

Now Playing

31.6 : Energy Stored In A Coaxial Cable

Inductance

1.3K Visualizzazioni

article

31.1 : Induttanza reciproca

Inductance

2.2K Visualizzazioni

article

31.2 : Autoinduttanza

Inductance

2.3K Visualizzazioni

article

31.3 : Calcolo dell'autoinduttanza

Inductance

212 Visualizzazioni

article

31.4 : Induttori

Inductance

5.3K Visualizzazioni

article

31.5 : Energia In Un Campo Magnetico

Inductance

2.1K Visualizzazioni

article

31.7 : Circuiti RL

Inductance

2.3K Visualizzazioni

article

31.8 : Crescita e decadimento della corrente nei circuiti RL

Inductance

3.4K Visualizzazioni

article

31.9 : Confronto tra circuiti RL e RC

Inductance

3.6K Visualizzazioni

article

31.10 : Circuiti LC

Inductance

2.3K Visualizzazioni

article

31.11 : Oscillazioni in un circuito LC

Inductance

2.1K Visualizzazioni

article

31.12 : Circuiti serie RLC

Inductance

2.6K Visualizzazioni

article

31.13 : Circuito RLC come oscillatore smorzato

Inductance

769 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati