JoVE Logo

S'identifier

5.8 : The Endoplasmic Reticulum

The endoplasmic reticulum or ER makes up for more than half of the membranes in a cell and accounts for 10% of total cell volume. It is also the primary protein and lipid synthesis factory for most cell organelles, such as the Golgi apparatus, lysosomes, secretory vesicles, and the plasma membrane. Despite being the most extensive and functionally complex subcellular organelle, ER was the last to be discovered. After years of deliberation, Keith Porter and George Palade in the year 1954, produced the first high-resolution electron microscope images to affirm the presence of ER in the eukaryotic cell.

The ER membranes were identified as sites for protein synthesis and crucial for intracellular transport using radio-labeled and fluorescent-labeled amino acids. The isolation of ER is a tricky task as it forms an intricate mesh with other subcellular organelles. However, on cell homogenization, the disrupted ER membranes reseal into small closed vesicles called microsomes. These vesicles form a microsystem capable of sustaining all ER-related functions like protein and lipid synthesis, calcium signaling, and glycosylation. Subcellular fractionation is the best and often-used technique for the purification of these membranes. When separating using a sucrose gradient, the rough ER microsomes sediments at a higher density than smooth ER microsomes.

The ER network in a cell is dynamic. It is constantly shape-shifting along with the cytoskeleton to bolster mechanical support for the cell structure. Despite the distinct cisternae and tubule morphologies of the ER membrane, interconversion between the two is possible and is governed by the expression of membrane proteins. The ER network rearranges by tubule growth, retraction, and fusion of adjacent ER-ER membranes.

As mentioned above, the ER network is required for optimal overall cellular health. Disruption of ER morphology is linked to pathological conditions, including neurological disorders like Alzheimer's disease, hereditary spastic paraplegia, and viral infections like hepatitis C virus, and dengue virus.

Tags

Endoplasmic ReticulumERCellular OrganelleProtein SynthesisLipid SynthesisRough ERSmooth ERMembrane boundEukaryotic Cells

Du chapitre 5:

article

Now Playing

5.8 : The Endoplasmic Reticulum

Cells and their Components

9.2K Vues

article

5.1 : Que sont les cellules ?

Cells and their Components

1.7K Vues

article

5.2 : Diversité cellulaire

Cells and their Components

2.8K Vues

article

5.3 : Cytoplasme

Cells and their Components

1.5K Vues

article

5.4 : Le Noyau

Cells and their Components

1.3K Vues

article

5.5 : Le nucléosome

Cells and their Components

1.2K Vues

article

5.6 : La particule du noyau du nucléosome

Cells and their Components

810 Vues

article

5.7 : Emballage de la chromatine

Cells and their Components

16.5K Vues

article

5.9 : Appareil de Golgi

Cells and their Components

1.9K Vues

article

5.10 : Lysosomes

Cells and their Components

1.6K Vues

article

5.11 : Mitochondrie

Cells and their Components

1.6K Vues

article

5.12 : Membranes mitochondriales

Cells and their Components

937 Vues

article

5.13 : Peroxysomes

Cells and their Components

832 Vues

article

5.14 : Ribosomes

Cells and their Components

1.5K Vues

article

5.15 : La structure du protéasome

Cells and their Components

653 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.