S'identifier

An ohmmeter is a resistance-measuring device. It works by applying a voltage to a resistor of unknown resistance and measuring the current across the resistor. The resistance value is deduced using Ohm's law. Usually, the standard configuration of an ohmmeter comprises a voltmeter or an ammeter. However, such configurations are limited in accuracy because the meters alter the voltage applied to the resistor and the current that flows through it.

Thus, for accurate resistance measurements, a technique is required that does not draw any current from the circuit. A Wheatstone bridge is one such technique. It is a null measurement device that measures the unknown resistance by balancing the potential drops. It consists of two branches of a parallel circuit connected by a galvanometer. The galvanometer acts as a bridge between the two branches. Thus, it is called a bridge circuit. The bridge circuit is connected to a voltage source. The branches have four resistors: two have precisely known resistance, one has variable resistance, and one is an unknown resistor. The variable resistor is adjusted until the galvanometer shows zero deflection. At this point, the circuit is balanced; there is no current flow through the galvanometer branch. The following expression gives the value of unknown resistance in terms of the known resistance values in the balanced condition:

Equation1

This method of measuring resistance is more accurate compared to standard voltmeters. However, two significant factors can affect the accuracy:

  1. Getting the current through the galvanometer to zero is impossible in real circuits.
  2. There is always some uncertainty in the known resistance values, contributing to the uncertainty in the unknown resistance.
Tags
Wheatstone BridgeOhmmeterResistance MeasurementVoltage SourceGalvanometerNull Measurement DeviceKnown ResistanceVariable ResistorCircuit BalanceAccuracy FactorsOhm s LawCurrent FlowParallel Circuit

Du chapitre 27:

article

Now Playing

27.13 : Wheatstone Bridge

Direct-Current Circuits

379 Vues

article

27.1 : Force électromotrice

Direct-Current Circuits

3.9K Vues

article

27.2 : Résistances en série

Direct-Current Circuits

4.4K Vues

article

27.3 : Résistances en parallèle

Direct-Current Circuits

4.2K Vues

article

27.4 : Combinaison de résistances

Direct-Current Circuits

2.3K Vues

article

27.5 : Règles de Kirchhoff

Direct-Current Circuits

4.2K Vues

article

27.6 : Règles de Kirchoff : Application

Direct-Current Circuits

1.3K Vues

article

27.7 : Batterie CC

Direct-Current Circuits

686 Vues

article

27.8 : Sources de tension multiples

Direct-Current Circuits

998 Vues

article

27.9 : Galvanomètre

Direct-Current Circuits

2.0K Vues

article

27.10 : Ampèremètre

Direct-Current Circuits

1.9K Vues

article

27.11 : Voltmètre

Direct-Current Circuits

1.1K Vues

article

27.12 : Potentiomètre

Direct-Current Circuits

428 Vues

article

27.14 : Puissance dissipée dans un circuit : résolution de problèmes

Direct-Current Circuits

939 Vues

article

27.15 : Circuits RC : Charge d’un condensateur

Direct-Current Circuits

3.1K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.