로그인

An ohmmeter is a resistance-measuring device. It works by applying a voltage to a resistor of unknown resistance and measuring the current across the resistor. The resistance value is deduced using Ohm's law. Usually, the standard configuration of an ohmmeter comprises a voltmeter or an ammeter. However, such configurations are limited in accuracy because the meters alter the voltage applied to the resistor and the current that flows through it.

Thus, for accurate resistance measurements, a technique is required that does not draw any current from the circuit. A Wheatstone bridge is one such technique. It is a null measurement device that measures the unknown resistance by balancing the potential drops. It consists of two branches of a parallel circuit connected by a galvanometer. The galvanometer acts as a bridge between the two branches. Thus, it is called a bridge circuit. The bridge circuit is connected to a voltage source. The branches have four resistors: two have precisely known resistance, one has variable resistance, and one is an unknown resistor. The variable resistor is adjusted until the galvanometer shows zero deflection. At this point, the circuit is balanced; there is no current flow through the galvanometer branch. The following expression gives the value of unknown resistance in terms of the known resistance values in the balanced condition:

Equation1

This method of measuring resistance is more accurate compared to standard voltmeters. However, two significant factors can affect the accuracy:

  1. Getting the current through the galvanometer to zero is impossible in real circuits.
  2. There is always some uncertainty in the known resistance values, contributing to the uncertainty in the unknown resistance.
Tags
Wheatstone BridgeOhmmeterResistance MeasurementVoltage SourceGalvanometerNull Measurement DeviceKnown ResistanceVariable ResistorCircuit BalanceAccuracy FactorsOhm s LawCurrent FlowParallel Circuit

장에서 27:

article

Now Playing

27.13 : Wheatstone Bridge

Direct-Current Circuits

379 Views

article

27.1 : 기전력

Direct-Current Circuits

3.9K Views

article

27.2 : 직렬로 된 저항기

Direct-Current Circuits

4.4K Views

article

27.3 : 병렬로 있는 저항기

Direct-Current Circuits

4.2K Views

article

27.4 : 저항기의 조합

Direct-Current Circuits

2.3K Views

article

27.5 : Kirchhoff의 규칙

Direct-Current Circuits

4.2K Views

article

27.6 : Kirchoff의 규칙: 적용

Direct-Current Circuits

1.3K Views

article

27.7 : DC 배터리

Direct-Current Circuits

686 Views

article

27.8 : 다중 전압 소스

Direct-Current Circuits

998 Views

article

27.9 : 검류계

Direct-Current Circuits

2.0K Views

article

27.10 : 전류계

Direct-Current Circuits

1.9K Views

article

27.11 : 전압계

Direct-Current Circuits

1.1K Views

article

27.12 : 전위차계

Direct-Current Circuits

428 Views

article

27.14 : 회로에서 소비되는 전력: 문제 해결

Direct-Current Circuits

939 Views

article

27.15 : RC 회로: 커패시터 충전

Direct-Current Circuits

3.1K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유