JoVE Logo

S'identifier

7.13 : Cable Subjected to Its Own Weight

Overhead power transmission lines rely on cables to carry electricity across large distances. To ensure the stability and functionality of these lines, it is crucial to understand the shape and tension experienced by the cables under the influence of their weight.

A generalized loading function is employed to analyze a cable subjected to its own weight. This function considers the force acting along the cable's arc length rather than its projected length, providing a more accurate representation of the cable's behavior. To further analyze the cable, a small segment of the cable is considered, and a free-body diagram is drawn. The diagram helps to visualize the forces acting on the cable segment and serves as a basis for applying the equilibrium equations.

Figure 1

A set of three equations can be obtained by applying the equilibrium equations to the cable segment. The first and second equations represent the horizontal and vertical components of the tensile force acting on the cable, respectively.

Equation 1

Equation 2

Equation 3

Using Pythagoras' theorem, a relationship can be established between the change in vertical distance (dy) and the arc length of the cable (ds). The relationship is then substituted into the third equation obtained from the equations of equilibrium. Finally, by rearranging the terms in the equation and integrating the obtained equation, an expression for the shape of the cable can be determined.

Equation 4

This expression allows engineers to calculate the sag and tension in the cable, ensuring the stability and efficiency of overhead power transmission lines.

Tags

Overhead Power TransmissionCable StabilityTensile ForceLoading FunctionArc LengthFree body DiagramEquilibrium EquationsPythagoras TheoremSag CalculationTension Analysis

Du chapitre 7:

article

Now Playing

7.13 : Cable Subjected to Its Own Weight

Internal Forces

422 Vues

article

7.1 : Convention de signature

Internal Forces

1.9K Vues

article

7.2 : Force normale et force de cisaillement

Internal Forces

2.0K Vues

article

7.3 : Moments de flexion et de torsion

Internal Forces

3.5K Vues

article

7.4 : Chargements internes dans les éléments structurels : résolution de problèmes

Internal Forces

1.2K Vues

article

7.5 : Poutres

Internal Forces

1.3K Vues

article

7.6 : Diagramme de cisaillement

Internal Forces

737 Vues

article

7.7 : Diagramme du moment de flexion

Internal Forces

980 Vues

article

7.8 : Relation entre la charge répartie et le cisaillement

Internal Forces

601 Vues

article

7.9 : Relation entre le moment de cisaillement et le moment de flexion

Internal Forces

969 Vues

article

7.10 : Diagramme des moments de cisaillement et de flexion : résolution de problèmes

Internal Forces

1.3K Vues

article

7.11 : Câble soumis à des charges concentrées

Internal Forces

792 Vues

article

7.12 : Câble soumis à une charge répartie

Internal Forces

631 Vues

article

7.14 : Câble : résolution de problèmes

Internal Forces

312 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.