Войдите в систему

Overhead power transmission lines rely on cables to carry electricity across large distances. To ensure the stability and functionality of these lines, it is crucial to understand the shape and tension experienced by the cables under the influence of their weight.

A generalized loading function is employed to analyze a cable subjected to its own weight. This function considers the force acting along the cable's arc length rather than its projected length, providing a more accurate representation of the cable's behavior. To further analyze the cable, a small segment of the cable is considered, and a free-body diagram is drawn. The diagram helps to visualize the forces acting on the cable segment and serves as a basis for applying the equilibrium equations.

Figure 1

A set of three equations can be obtained by applying the equilibrium equations to the cable segment. The first and second equations represent the horizontal and vertical components of the tensile force acting on the cable, respectively.

Equation 1

Equation 2

Equation 3

Using Pythagoras' theorem, a relationship can be established between the change in vertical distance (dy) and the arc length of the cable (ds). The relationship is then substituted into the third equation obtained from the equations of equilibrium. Finally, by rearranging the terms in the equation and integrating the obtained equation, an expression for the shape of the cable can be determined.

Equation 4

This expression allows engineers to calculate the sag and tension in the cable, ensuring the stability and efficiency of overhead power transmission lines.

Теги
Overhead Power TransmissionCable StabilityTensile ForceLoading FunctionArc LengthFree body DiagramEquilibrium EquationsPythagoras TheoremSag CalculationTension Analysis

Из главы 7:

article

Now Playing

7.13 : Cable Subjected to Its Own Weight

Internal Forces

361 Просмотры

article

7.1 : Правило знаков

Internal Forces

1.8K Просмотры

article

7.2 : Нормальная и поперечная сила

Internal Forces

1.9K Просмотры

article

7.3 : Изгибающие и крутящие моменты

Internal Forces

3.2K Просмотры

article

7.4 : Внутренние нагрузки в элементах конструкций: решение проблемы

Internal Forces

1.2K Просмотры

article

7.5 : Балки

Internal Forces

1.2K Просмотры

article

7.6 : Диаграмма сдвига

Internal Forces

645 Просмотры

article

7.7 : Диаграмма изгибающего момента

Internal Forces

846 Просмотры

article

7.8 : Зависимость между распределенной нагрузкой и сдвигом

Internal Forces

538 Просмотры

article

7.9 : Соотношение между сдвигом и изгибающим моментом

Internal Forces

857 Просмотры

article

7.10 : Диаграмма сдвиговых и изгибающих моментов: решение проблем

Internal Forces

1.1K Просмотры

article

7.11 : Кабель, подвергающийся воздействию сосредоточенных нагрузок

Internal Forces

726 Просмотры

article

7.12 : Кабель под действием распределенной нагрузки

Internal Forces

569 Просмотры

article

7.14 : Кабель: решение проблем

Internal Forces

287 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены