S'identifier

When dealing with a cable that is fixed to two supports and subjected to uniform loading, it is crucial to determine the maximum tension in the cable. This process can be broken down into several key steps, as outlined below:

Figure 1

Analyze the problem: Begin by understanding the given scenario and the conditions of the cable. Identify the supports, the type of loading, and any other relevant information.

Determine the cable's shape equation: Use the principles of equilibrium and the cable's properties to establish the shape equation that describes the cable's curve. This equation relates the cable's shape to the applied load.

Equation 1

Integrate the equation: Integrate the shape equation to obtain a function that represents the shape of the cable. This integration process allows you to determine the constants in the equation. By applying the boundary conditions at the origin, the value of one of the integration constants can be determined.

Equation 2

Find the slope: Take the first derivative of the cable's shape equation to determine the slope of the cable at any given point. Apply the boundary conditions for the slope at the origin to obtain the value of another integration constant.

Calculate the horizontal tensile force: By substituting the integration constants and the position coordinates of the support into the shape equation. Rearrange the terms to find the horizontal tensile force acting on the cable.

Equation 3

Determine the angle: Use the slope equation to calculate the angle of the cable at various points. Find the location along the cable where the angle is at its maximum, usually near the supports. Utilize trigonometric relationships to express the maximum tension in terms of the horizontal tensile force and the angle of the cable.

Equation 4

Find the maximum tension: Substitute the horizontal tension equation and the known values into the maximum tension equation. This will allow you to calculate the maximum tension in the cable.

Equation 5

Tags
Cable TensionProblem SolvingUniform LoadingShape EquationEquilibrium PrinciplesIntegration ProcessSlope DeterminationHorizontal Tensile ForceTrigonometric RelationshipsMaximum Tension Calculation

Du chapitre 7:

article

Now Playing

7.14 : Cable: Problem Solving

Internal Forces

287 Vues

article

7.1 : Convention de signature

Internal Forces

1.8K Vues

article

7.2 : Force normale et force de cisaillement

Internal Forces

1.9K Vues

article

7.3 : Moments de flexion et de torsion

Internal Forces

3.2K Vues

article

7.4 : Chargements internes dans les éléments structurels : résolution de problèmes

Internal Forces

1.2K Vues

article

7.5 : Poutres

Internal Forces

1.2K Vues

article

7.6 : Diagramme de cisaillement

Internal Forces

644 Vues

article

7.7 : Diagramme du moment de flexion

Internal Forces

845 Vues

article

7.8 : Relation entre la charge répartie et le cisaillement

Internal Forces

533 Vues

article

7.9 : Relation entre le moment de cisaillement et le moment de flexion

Internal Forces

855 Vues

article

7.10 : Diagramme des moments de cisaillement et de flexion : résolution de problèmes

Internal Forces

1.1K Vues

article

7.11 : Câble soumis à des charges concentrées

Internal Forces

723 Vues

article

7.12 : Câble soumis à une charge répartie

Internal Forces

569 Vues

article

7.13 : Câble soumis à son propre poids

Internal Forces

360 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.