로그인

When dealing with a cable that is fixed to two supports and subjected to uniform loading, it is crucial to determine the maximum tension in the cable. This process can be broken down into several key steps, as outlined below:

Figure 1

Analyze the problem: Begin by understanding the given scenario and the conditions of the cable. Identify the supports, the type of loading, and any other relevant information.

Determine the cable's shape equation: Use the principles of equilibrium and the cable's properties to establish the shape equation that describes the cable's curve. This equation relates the cable's shape to the applied load.

Equation 1

Integrate the equation: Integrate the shape equation to obtain a function that represents the shape of the cable. This integration process allows you to determine the constants in the equation. By applying the boundary conditions at the origin, the value of one of the integration constants can be determined.

Equation 2

Find the slope: Take the first derivative of the cable's shape equation to determine the slope of the cable at any given point. Apply the boundary conditions for the slope at the origin to obtain the value of another integration constant.

Calculate the horizontal tensile force: By substituting the integration constants and the position coordinates of the support into the shape equation. Rearrange the terms to find the horizontal tensile force acting on the cable.

Equation 3

Determine the angle: Use the slope equation to calculate the angle of the cable at various points. Find the location along the cable where the angle is at its maximum, usually near the supports. Utilize trigonometric relationships to express the maximum tension in terms of the horizontal tensile force and the angle of the cable.

Equation 4

Find the maximum tension: Substitute the horizontal tension equation and the known values into the maximum tension equation. This will allow you to calculate the maximum tension in the cable.

Equation 5

Tags
Cable TensionProblem SolvingUniform LoadingShape EquationEquilibrium PrinciplesIntegration ProcessSlope DeterminationHorizontal Tensile ForceTrigonometric RelationshipsMaximum Tension Calculation

장에서 7:

article

Now Playing

7.14 : Cable: Problem Solving

Internal Forces

287 Views

article

7.1 : 서명 규약

Internal Forces

1.8K Views

article

7.2 : 법선 및 전단력

Internal Forces

1.9K Views

article

7.3 : 굽힘 및 비틀림 모멘트

Internal Forces

3.2K Views

article

7.4 : 구조부재의 내부 하중: 문제 해결

Internal Forces

1.2K Views

article

7.5 :

Internal Forces

1.2K Views

article

7.6 : 전단 다이어그램

Internal Forces

645 Views

article

7.7 : 굽힘 모멘트 다이어그램

Internal Forces

846 Views

article

7.8 : 분산 하중과 전단의 관계

Internal Forces

538 Views

article

7.9 : 전단 모멘트와 굽힘 모멘트의 관계

Internal Forces

857 Views

article

7.10 : Shear and Bending Moment Diagram: 문제 해결

Internal Forces

1.1K Views

article

7.11 : 집중 하중을 받는 케이블

Internal Forces

726 Views

article

7.12 : 분산 부하가 가해지는 케이블

Internal Forces

569 Views

article

7.13 : 자체 무게에 영향을 받는 케이블

Internal Forces

361 Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유