S'identifier

Flat belts are commonly used in various industrial applications for transmitting power from one pulley to another. When a flat belt is wrapped around a set of pulleys, it experiences different tensions at the driving pulley ends due to the friction between the belt and pulley surface. When the pulley moves in a counterclockwise direction, the tension T2 on the opposite side of the pulley where the belt is moving away from is higher than the tension T1 on the side where the belt is moving towards.

To estimate the tensions in a flat belt, the total angle of belt-to-surface contact and the coefficient of friction between the surfaces must be known. A free-body diagram of a differential element AB of the belt can be drawn assuming impending motion.

Figure 1

The frictional force opposes the sliding motion of the belt, causing the magnitude of the belt tension acting at point B to increase by dT. This differential tension can be used to relate the tensions at different points along the belt.

To determine the relationship between the belt tensions, the horizontal and vertical force equilibrium equations, along with cosine and sine approximations, are used.

Equation 1

Equation 2

These equations consider the forces acting on the differential element AB in the horizontal and vertical directions. The product of two differentials compared to the first-order differentials is neglected in the vertical equilibrium equations, while the horizontal equilibrium equation is simplified further. The equilibrium equations are combined and integrated between corresponding limits.

Equation 3

The result gives an expression correlating the belt tensions.

Equation 4

This equation applies to flat belts passing over any curved contacting surface.

The frictional forces on flat belts are crucial in determining the performance and efficiency of the belt-driven system. Over-tensioning the belt can cause premature wear and reduce efficiency, while under-tensioning can cause slippage and reduce power transmission. Proper tensioning is achieved by adjusting the distance between the pulleys or using a tensioning device.

Tags

Frictional ForcesFlat BeltsPower TransmissionPulley TensionCoefficient Of FrictionBelt to surface ContactFree body DiagramDifferential TensionTension RelationshipEquilibrium EquationsPerformance EfficiencyOver tensioningUnder tensioningTensioning Device

Du chapitre 8:

article

Now Playing

8.12 : Frictional Forces on Flat Belts

Friction

818 Vues

article

8.1 : Friction à sec

Friction

314 Vues

article

8.2 : Friction statique

Friction

679 Vues

article

8.3 : Friction cinétique

Friction

858 Vues

article

8.4 : Caractéristiques du frottement sec

Friction

440 Vues

article

8.5 : Types de problèmes de friction

Friction

489 Vues

article

8.6 : Friction : résolution de problèmes

Friction

183 Vues

article

8.7 : Coins

Friction

999 Vues

article

8.8 : Forces de frottement sur les vis

Friction

1.1K Vues

article

8.9 : Mouvement imminent vers le haut

Friction

221 Vues

article

8.10 : Vis autobloquante

Friction

1.4K Vues

article

8.11 : Vis : résolution de problèmes

Friction

373 Vues

article

8.13 : Courroies plates : résolution de problèmes

Friction

302 Vues

article

8.14 : Roulements de pivot

Friction

1.1K Vues

article

8.15 : Roulements à collerette

Friction

1.2K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.