Entrar

Flat belts are commonly used in various industrial applications for transmitting power from one pulley to another. When a flat belt is wrapped around a set of pulleys, it experiences different tensions at the driving pulley ends due to the friction between the belt and pulley surface. When the pulley moves in a counterclockwise direction, the tension T2 on the opposite side of the pulley where the belt is moving away from is higher than the tension T1 on the side where the belt is moving towards.

To estimate the tensions in a flat belt, the total angle of belt-to-surface contact and the coefficient of friction between the surfaces must be known. A free-body diagram of a differential element AB of the belt can be drawn assuming impending motion.

Figure 1

The frictional force opposes the sliding motion of the belt, causing the magnitude of the belt tension acting at point B to increase by dT. This differential tension can be used to relate the tensions at different points along the belt.

To determine the relationship between the belt tensions, the horizontal and vertical force equilibrium equations, along with cosine and sine approximations, are used.

Equation 1

Equation 2

These equations consider the forces acting on the differential element AB in the horizontal and vertical directions. The product of two differentials compared to the first-order differentials is neglected in the vertical equilibrium equations, while the horizontal equilibrium equation is simplified further. The equilibrium equations are combined and integrated between corresponding limits.

Equation 3

The result gives an expression correlating the belt tensions.

Equation 4

This equation applies to flat belts passing over any curved contacting surface.

The frictional forces on flat belts are crucial in determining the performance and efficiency of the belt-driven system. Over-tensioning the belt can cause premature wear and reduce efficiency, while under-tensioning can cause slippage and reduce power transmission. Proper tensioning is achieved by adjusting the distance between the pulleys or using a tensioning device.

Tags

Frictional ForcesFlat BeltsPower TransmissionPulley TensionCoefficient Of FrictionBelt to surface ContactFree body DiagramDifferential TensionTension RelationshipEquilibrium EquationsPerformance EfficiencyOver tensioningUnder tensioningTensioning Device

Do Capítulo 8:

article

Now Playing

8.12 : Forças de Atrito em Correias Planas

Atrito

818 Visualizações

article

8.1 : Atrito Seco

Atrito

314 Visualizações

article

8.2 : Atrito Estático

Atrito

679 Visualizações

article

8.3 : Atrito Cinético

Atrito

858 Visualizações

article

8.4 : Características do Atrito Seco

Atrito

440 Visualizações

article

8.5 : Tipos de Problemas de Atrito

Atrito

489 Visualizações

article

8.6 : Atrito: Resolução de Problemas

Atrito

183 Visualizações

article

8.7 : Cunhas

Atrito

999 Visualizações

article

8.8 : Forças de Atrito em Parafusos

Atrito

1.1K Visualizações

article

8.9 : Movimento Iminente para Cima

Atrito

221 Visualizações

article

8.10 : Parafuso Auto-Travante

Atrito

1.4K Visualizações

article

8.11 : Parafuso: Resolução de Problemas

Atrito

373 Visualizações

article

8.13 : Correias Planas: Resolução de Problemas

Atrito

302 Visualizações

article

8.14 : Mancais Pivotantes

Atrito

1.1K Visualizações

article

8.15 : Mancais de Colar

Atrito

1.2K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados