S'identifier

Sometimes, a data set can have a recorded numerical observation that greatly deviates from the rest of the data. Assuming that the data is normally distributed, a statistical method called the Grubbs test can be used to determine whether the observation is truly an outlier. To perform a two-tailed Grubbs test, first, calculate the absolute difference between the outlier and the mean. Then, calculate the ratio between this difference and the standard deviation of the sample. This number is known as the Grubbs statistic, 'G.' When the calculated G value exceeds the G critical value for a given confidence level and the number of observations, the questionable observation is considered an outlier and removed from the data set. On the contrary, if the calculated G value is smaller than the critical G value, the questionable observation is not considered an outlier and therefore retained in the data set.

Tags

Grubbs TestOutliersStatistical MethodNormally DistributedGrubbs StatisticG ValueG Critical ValueConfidence LevelData SetAbsolute DifferenceStandard Deviation

Du chapitre 1:

article

Now Playing

1.21 : Quantifying and Rejecting Outliers: The Grubbs Test

Chemical Applications of Statistical Analyses

1.3K Vues

article

1.1 : SI Units: 2019 Redefinition

Chemical Applications of Statistical Analyses

1.1K Vues

article

1.2 : Degrees of Freedom

Chemical Applications of Statistical Analyses

2.8K Vues

article

1.3 : Statistical Analysis: Overview

Chemical Applications of Statistical Analyses

4.3K Vues

article

1.4 : Types of Errors: Detection and Minimization

Chemical Applications of Statistical Analyses

1.1K Vues

article

1.5 : Systematic Error: Methodological and Sampling Errors

Chemical Applications of Statistical Analyses

1.2K Vues

article

1.6 : Random Error

Chemical Applications of Statistical Analyses

608 Vues

article

1.7 : Standard Deviation of Calculated Results

Chemical Applications of Statistical Analyses

4.1K Vues

article

1.8 : Introduction to z Scores

Chemical Applications of Statistical Analyses

289 Vues

article

1.9 : Uncertainty: Overview

Chemical Applications of Statistical Analyses

316 Vues

article

1.10 : Propagation of Uncertainty from Random Error

Chemical Applications of Statistical Analyses

422 Vues

article

1.11 : Propagation of Uncertainty from Systematic Error

Chemical Applications of Statistical Analyses

276 Vues

article

1.12 : Uncertainty: Confidence Intervals

Chemical Applications of Statistical Analyses

2.8K Vues

article

1.13 : Significance Testing: Overview

Chemical Applications of Statistical Analyses

3.2K Vues

article

1.14 : Identifying Statistically Significant Differences: The F-Test

Chemical Applications of Statistical Analyses

1.3K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.