In mechanics, when one observes a rigid body in rotational motion with constant angular acceleration, it is possible to establish equations for its rotational kinematics. This process resembles how linear kinematics are dealt with in simpler motion studies.

For instance, imagine a point A on a rigid body engaged in circular motion. The translational velocity of this particular point can be calculated by taking the time derivatives of the displacement equation, which essentially measures the change in position of point A over time. This translational velocity is always tangential to the circular path traced by point A, implying that at any given moment, the direction of the velocity is tangent to the circle at that point. This relationship can be mathematically expressed using the vector product of the angular velocity and the position vector.

Equation 1

Further examination of point A's motion allows for the description of its linear acceleration. This is achieved by summing up the normal and tangential acceleration components.

Equation 2

These two distinct components provide different aspects of the acceleration. The tangential component reveals the rate of change of the velocity's magnitude over time, indicating how rapidly point A's speed (not the direction) changes. Conversely, the normal component provides information on the rate of change of the velocity's direction, showing how swiftly point A alters its course of motion.

Lastly, the acceleration can be represented in vector form, which is derived by taking the time derivative of the vector equation of the translational velocity.

Equation 3

Equation 4

In this representation, the initial term corresponds to the tangential acceleration, while the subsequent term provides the normal component of acceleration. Together, these terms offer a comprehensive description of the acceleration of point A on the rotating rigid body.

Tags
Kinematic EquationsRotational MotionAngular AccelerationRigid BodyTranslational VelocityCircular MotionVector ProductLinear AccelerationTangential AccelerationNormal AccelerationVelocity ComponentsAcceleration Vector

Du chapitre 15:

article

Now Playing

15.3 : Kinematic Equations for Rotation

Planar Kinematics of a Rigid Body

214 Vues

article

15.1 : Mouvement planaire d’un corps rigide

Planar Kinematics of a Rigid Body

263 Vues

article

15.2 : Mouvement de rotation autour d’un axe fixe

Planar Kinematics of a Rigid Body

233 Vues

article

15.4 : Analyse du mouvement absolu - Mouvement général du plan

Planar Kinematics of a Rigid Body

132 Vues

article

15.5 : Analyse du mouvement relatif - Vitesse

Planar Kinematics of a Rigid Body

261 Vues

article

15.6 : Centre instantané de vitesse nulle

Planar Kinematics of a Rigid Body

337 Vues

article

15.7 : Analyse du mouvement relatif - Accélération

Planar Kinematics of a Rigid Body

253 Vues

article

15.8 : Analyse du mouvement relatif à l’aide d’axes rotatifs

Planar Kinematics of a Rigid Body

339 Vues

article

15.9 : Analyse du mouvement relatif à l’aide d’axes de rotation - Accélération

Planar Kinematics of a Rigid Body

230 Vues

article

15.10 : Analyse du mouvement relatif à l’aide d’axes rotatifs - Résolution de problèmes

Planar Kinematics of a Rigid Body

283 Vues

article

15.11 : Équation du mouvement : rotation autour d’un axe fixe

Planar Kinematics of a Rigid Body

133 Vues

article

15.12 : Équation du mouvement : Mouvement général du plan

Planar Kinematics of a Rigid Body

157 Vues

article

15.13 : Équation du mouvement : mouvement général du plan - Résolution de problèmes

Planar Kinematics of a Rigid Body

96 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.