When a structural member undergoes plastic deformation due to bending, it is crucial to understand the position of the neutral axis and the stress distribution. This member, characterized by a single plane of symmetry, exhibits a uniform stress distribution, with negative stress above the neutral axis and positive stress below. Notably, the neutral axis does not align with the centroid of the cross-section. This misalignment is typical in cases where the cross-section is not rectangular or experiences severe deformation.
The resultant forces generated by the bending of the member are analyzed to locate the neutral axis. The compressive forces acting above the neutral axis and the tensile forces below it generate resultants with equal magnitude but opposite directions, forming a couple. This configuration indicates that the neutral axis divides the cross-section into two equal areas, each contributing equally to force equilibrium.
The plastic moment of the member Mp, a critical structural parameter, is derived from the relationship between the cross-sectional area, the material's yield stress, and the distance between the centroids of the areas d created by the neutral axis.
Calculating the plastic moment is essential for predicting the maximum moment the section can handle before significant plastic deformations occur. This consideration is particularly crucial for structural components in dynamically loaded areas, such as seismic zones, emphasizing how material properties and cross-sectional geometry influence a structure's capacity to withstand bending loads.
Du chapitre 20:
Now Playing
Bending
67 Vues
Bending
215 Vues
Bending
140 Vues
Bending
147 Vues
Bending
204 Vues
Bending
129 Vues
Bending
136 Vues
Bending
94 Vues
Bending
170 Vues
Bending
59 Vues
Bending
67 Vues
Bending
105 Vues
Bending
91 Vues
Bending
228 Vues
Bending
188 Vues
See More