When a structural member undergoes plastic deformation due to bending, it is crucial to understand the position of the neutral axis and the stress distribution. This member, characterized by a single plane of symmetry, exhibits a uniform stress distribution, with negative stress above the neutral axis and positive stress below. Notably, the neutral axis does not align with the centroid of the cross-section. This misalignment is typical in cases where the cross-section is not rectangular or experiences severe deformation.

The resultant forces generated by the bending of the member are analyzed to locate the neutral axis. The compressive forces acting above the neutral axis and the tensile forces below it generate resultants with equal magnitude but opposite directions, forming a couple. This configuration indicates that the neutral axis divides the cross-section into two equal areas, each contributing equally to force equilibrium.

The plastic moment of the member Mp, a critical structural parameter, is derived from the relationship between the cross-sectional area, the material's yield stress, and the distance between the centroids of the areas d created by the neutral axis.

Equation 1

Calculating the plastic moment is essential for predicting the maximum moment the section can handle before significant plastic deformations occur. This consideration is particularly crucial for structural components in dynamically loaded areas, such as seismic zones, emphasizing how material properties and cross-sectional geometry influence a structure's capacity to withstand bending loads.

Tags
Plastic DeformationStructural MemberNeutral AxisStress DistributionBending AnalysisCross sectionResultant ForcesCompressive ForcesTensile ForcesPlastic MomentYield StressForce EquilibriumDynamically Loaded AreasSeismic ZonesMaterial Properties

Du chapitre 20:

article

Now Playing

20.11 : Plastic Deformations of Members with a Single Plane of Symmetry

Bending

67 Vues

article

20.1 : Pliage

Bending

215 Vues

article

20.2 : Membre symétrique en flexion

Bending

140 Vues

article

20.3 : Déformations d’un élément symétrique en flexion

Bending

147 Vues

article

20.4 : Contrainte de flexion

Bending

204 Vues

article

20.5 : Déformations d’une section transversale

Bending

129 Vues

article

20.6 : Pliage de la matière : résolution de problèmes

Bending

136 Vues

article

20.7 : Flexion d’éléments constitués de plusieurs matériaux

Bending

94 Vues

article

20.8 : Concentrations de contraintes

Bending

170 Vues

article

20.9 : Déformations plastiques

Bending

59 Vues

article

20.10 : Éléments en matériau élastoplastique

Bending

67 Vues

article

20.12 : Contraintes résiduelles en flexion

Bending

105 Vues

article

20.13 : Charge axiale excentrique dans un plan de symétrie

Bending

91 Vues

article

20.14 : Flexion asymétrique

Bending

228 Vues

article

20.15 : Flexion asymétrique - Angle de l’axe neutre

Bending

188 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.