Method Article
Une méthode pour la photo-encapsulation de cellules dans un hydrogel PEG réticulé est décrite. De signalisation hypoxique dans les insulinome murin encapsulé (min6) agrégats sont suivis en utilisant un système de marqueur fluorescent. Ce système permet l'examen en série de cellules dans un hydrogel et d'échafaudage de corrélation de la signalisation hypoxique avec des changements dans le phénotype cellulaire.
In Diabetes mellitus type 1, autoimmune destruction of the pancreatic β-cells results in loss of insulin production and potentially lethal hyperglycemia. As an alternative treatment option to exogenous insulin injection, transplantation of functional pancreatic tissue has been explored1,2. This approach offers the promise of a more natural, long-term restoration of normoglycemia. Protection of the donor tissue from the host's immune system is required to prevent rejection and encapsulation is a method used to help achieve this aim.
Biologically-derived materials, such as alginate3 and agarose4, have been the traditional choice for capsule construction but may induce inflammation or fibrotic overgrowth5 which can impede nutrient and oxygen transport. Alternatively, synthetic poly(ethylene glycol) (PEG)-based hydrogels are non-degrading, easily functionalized, available at high purity, have controllable pore size, and are extremely biocompatible,6,7,8. As an additional benefit, PEG hydrogels may be formed rapidly in a simple photo-crosslinking reaction that does not require application of non-physiological temperatures6,7. Such a procedure is described here. In the crosslinking reaction, UV degradation of the photoinitiator, 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 2959), produces free radicals which attack the vinyl carbon-carbon double bonds of dimethacrylated PEG (PEGDM) inducing crosslinking at the chain ends. Crosslinking can be achieved within 10 minutes. PEG hydrogels constructed in such a manner have been shown to favorably support cells7,9, and the low photoinitiator concentration and brief exposure to UV irradiation is not detrimental to viability and function of the encapsulated tissue10. While we methacrylate our PEG with the method described below, PEGDM can also be directly purchased from vendors such as Sigma.
An inherent consequence of encapsulation is isolation of the cells from a vascular network. Supply of nutrients, notably oxygen, is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen11-13. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated14. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling15. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously15. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 1010 pfu/mL.
Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion15. Western blot analysis of encapsulated cells in 20% and 1% oxygen also showed a significant increase in HIF-1α for cells cultured in the low oxygen conditions which correlates with the expression of the DsRed DR protein.
1. La synthèse et de PEGDM PEGDM photoactifs solution de macromère préparation
2. Culture, l'infection, et l'agrégation des cellules min6
3. L'encapsulation des cellules dans PEGDM
4. Suivi hypoxie
5. Les résultats représentatifs
Un exemple représentatif de min6 agrégats encapsulé dans un hydrogel PEG est montré dans la figure 4. Le gel réticulé sera solide tout au long, prenant la forme du récipient dans lequel la réaction a été effectuée. Un gel aux surfaces lisses et externe est préférable pour l'implantation d'une aide dans la prévention d'un nouveau corps étrangersponse. L'intérieur du gel, des agrégats de cellules doivent être entièrement fermés dans la matrice et distribuée de façon homogène pour permettre le transport des nutriments mieux.
Des images représentatives de la signalisation hypoxique dans les min6 agrégats sont représentés dans la figure 5. Identique min6 agrégats infectées par le virus de marqueur ont été cultivées en soit 20% d'O 2 (5a) ou 1% d'O 2 (5b) pour 44 heures avant la capture d'image.
Figure 1. Schéma de l'activité de notre système de marqueur de l'hypoxie. L'insertion du gène adénoviraux Ds Rouge RD et en amont permet de HRE promoteur induite par l'hypoxie production de la protéine fluorescente sous contrôle de HIF-1.
Figure 2. Diagramme de procédure pour l'encapsulation en une seule étape de la dispersion min6 cellules dans un crosslinked hydrogel PEGDM. Pour chaque gel, les cellules dispersées sont en suspension dans 40μL de la solution de macromère photoactifs PEGDM. Il est placé dans une seringue de 1 ml décapitée et l'hydrogel est formé sous la lumière UV 365nm après 10-12 minutes. Une fois terminée, le disque d'hydrogel est retiré de la seringue, lavés et placés dans une assiette bien remplie moyen pour l'incubation.
Figure 3. Diagramme de procédure pour l'encapsulation double étape de agrégées min6 cellules dans un hydrogel réticulé PEGDM. Pour chaque gel, une demi-gel est d'abord formée par réticulation UV de 20 pi de la solution de macromère photoactifs PEGDM pendant 8 minutes. Min6 agrégats sont soigneusement en suspension dans une solution de 20 pi supplémentaires de macromère photoactifs qui est ajouté au sommet de la pré-formé demi-gel. Le gel complet est formé par un 8 minutes supplémentaires d'exposition aux rayons UV avec des granulats entièrement encapsulé dans la médialeplan du gel.
Figure 4. Image d'un hydrogel 40μL sous un grossissement de 20x. Min6 agrégats (~ 400 000 cellules au total) sont clairement visibles dans le gel. Diamètre est d'environ 6mm d'hydrogel (barre = 1 mm).
Hypoxie Figure 5. Fluorescents de signalisation dans les cellules agrégées min6 dans un hydrogel PEGDM. Les cellules qui ont été encapsulées et ensuite mis en incubation à 20% d'O 2 pendant 44 heures ne s'affichent pas de signalisation hypoxie (a) tandis que les cellules qui ont été encapsulées puis incubés dans 2% O 2 pour 44 heures d'affichage signal clair et omniprésent. (Barre = 100 microns) (b).
La méthode présentée ici propose une technique simple et rapide pour l'encapsulation de cellules dans un hydrogel PEG avec une utilisation minimale des conditions non physiologiques. PEG constitue un matériau d'encapsulation très utile pour sa biocompatibilité et la facilité de modification. Simple variation du pourcentage de PEG dans la solution photoactifs, par exemple, peut être utilisé pour ajuster les propriétés mécaniques, telles que le module de compression et les propriétés de transport grâce à la taille des pores. En outre, le PEG est facilement modifiée par l'ajout de chaînes latérales. Hydrogels PEG, par conséquent, représentent à la fois un dispositif clinique prometteur et une plateforme flexible pour la recherche in vitro
Une méthode pour le suivi de l'hypoxie dans le PEG-encapsulé cellules a également été présenté. Cette méthode est utile pour la simplicité de la détection d'hypoxie et d'éviter la nécessité de sacrifier les cellules d'intérêt. La technique peut être appliquée à une variété de types de cellules dans une variété de conditions rendant son-nousefulness large. Par exemple, l'hypoxie comme un indice de différenciation de cellules souches peuvent être suivis dans les cultures de cellules souches micromasse. Cependant, cette méthode ne peut être appliquée aux systèmes dispersés de cellules ou d'un système dans lequel les cellules sont dispersées tard agrégées. En outre, la détection du signal fluorescent peut être difficile dans les tissus plus ou dense.
Pas de conflits d'intérêt déclarés.
Merci à le laboratoire Kristi Anseth de l'Université du Colorado, Boulder a généreusement fournissant min6 cellules. Le financement de ce projet a été fourni par la NSF.
Nom du réactif | Société | Numéro de catalogue | Commentaires (optionnel |
PEG | Sigma-Aldrich | 309028-500G | |
Anhydride méthacrylique | Sigma-Aldrich | 276 685-100ml | |
Micro-ondes | Emerson | MW8784SB | |
Vortexer | Scientific Industries | SI-A236 | |
Chlorure de méthylène | Sigma-Aldrich | D65100-1L | |
L'éther diéthylique | Sigma-Aldrich | 346136-1L | |
Tubes de dialyse | Spectrum | 132640 | |
Laboratoires | |||
Congélateur | |||
Lyophilisateur | Labconco | 7670521 | |
Pompe à vide | Welch | 8917Z-01 | |
Irgacure 2959 | Ciba-Geigy | 029891301PS04 | |
HBSS | Mediatech | 21 à 022-CV | |
Filtre seringue | VWR | 28145-477 | |
RPMI 1640 | Mediatech | * | * La formulation personnalisée |
FBS | Laboratoires AAP | A15-351 | |
Pénicilline-streptomycine | Mediatech | 30 à 002-CI | |
L'amphotéricine B | Mediatech | 30 à 003-CF | |
Incubateur | Thermo Scientific | 3597 | Napco Series 8000 WJ w / O2 de suppression |
Trypsine EDTA | Mediatech | 25 à 052-CI | |
Orbital Shaker | VWR | 12620-926 | |
Lampe UV | Sanyo Denri | FLR40SBLB / M | Contient deux 40W, 365nm ampoules blacklight UV bleue |
Centrifugeuse | Eppendorf | 5811 000.010 * | * Numéro de commande. Modèle 5810 R |
Microscope | Nikon | TI-ND6-PFS | Avec filterset pour l'excitation 556nm / 586nm d'émission |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon