Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Nous présentons ici un protocole permettant d’obtenir des images de résonance magnétique au xénon-129 hyperpolarisé de haute qualité, couvrant le matériel, les logiciels, l’acquisition de données, la sélection de séquences, la gestion des données, l’utilisation de l’espace k et l’analyse du bruit.
L’imagerie par résonance magnétique au xénon hyperpolarisé (HP) (IRM 129Xe) est une modalité d’imagerie récemment approuvée par la Federal Drug Administration (FDA) qui produit des images haute résolution d’une respiration inhalée de gaz xénon pour l’étude de la fonction pulmonaire. Cependant, la mise en œuvre de l’IRM 129Xe est particulièrement difficile car elle nécessite du matériel et de l’équipement spécialisés pour l’hyperpolarisation, l’acquisition de bobines d’imagerie au xénon et de logiciels de bobines, le développement et la compilation de séquences d’imagerie IRM multinucléaires, ainsi que la reconstruction et l’analyse des données acquises. Sans une expertise appropriée, ces tâches peuvent être intimidantes, et l’échec de l’acquisition d’images de haute qualité peut être frustrant et coûteux. Nous présentons ici des protocoles de contrôle de la qualité (CQ), des pratiques de dépannage et des outils utiles pour129sites d’IRM Xe, qui peuvent aider à l’acquisition de données optimisées et de haute qualité et de résultats précis. La discussion commencera par un aperçu du processus de mise en œuvre de l’IRM HP 129Xe, y compris les exigences d’un laboratoire d’hyperpolariseurs, la combinaison du matériel et du logiciel de la bobine d’IRM 129Xe, les considérations relatives à l’acquisition et à la séquence des données, les structures de données, les propriétés de l’espace k et de l’image, ainsi que les caractéristiques mesurées du signal et du bruit. Dans chacune de ces étapes nécessaires se trouvent des possibilités d’erreurs, de défis et d’événements défavorables conduisant à une mauvaise qualité d’image ou à une imagerie défaillante, et cette présentation vise à aborder certains des problèmes les plus couramment rencontrés. En particulier, l’identification et la caractérisation des modèles de bruit anormaux dans les données acquises sont nécessaires pour éviter les artefacts d’image et les images de mauvaise qualité ; Des exemples seront donnés et des stratégies d’atténuation seront discutées. Notre objectif est de faciliter le processus de mise en œuvre de l’IRM 129Xe pour les nouveaux sites, tout en fournissant des directives et des stratégies pour le dépannage en temps réel.
Depuis plus d’un siècle, l’évaluation de la fonction pulmonaire repose principalement sur des mesures globales de spirométrie et de pléthysmographie corporelle. Cependant, ces tests traditionnels de la fonction pulmonaire (PFT) sont limités dans leur capacité à saisir les nuances régionales de la maladie à un stade précoce et les changements subtils dans le tissu pulmonaire1. La médecine nucléaire avec des radiotraceurs inhalés a été largement utilisée pour l’évaluation des incompatibilités ventilation/perfusion couramment associées aux emboles pulmonaires, mais cela implique des rayonnements ionisants et donne une résolution plus faible. En revanche, la tomodensitométrie (TDM) s’est imposée comme l’étalon-or de l’imagerie pulmonaire, offrant une clarté spatiale et temporelle exceptionnelle par rapport à l’imagerie nucléaire2. Bien que les tomodensitogrammes à faible dose puissent atténuer l’exposition aux rayonnements, les risques potentiels liés aux rayonnements doivent tout de même être pris en compte 3,4. L’IRM à protons du poumon est rare en raison de la faible densité tissulaire du poumon et de la décroissance rapide du signal du tissu pulmonaire, bien que les progrès récents offrent des informations fonctionnelles malgré un signal potentiellement faible. D’autre part, l’imagerie par résonance magnétique au xénon hyperpolarisée (IRM HP 129Xe) est une modalité non invasive qui permet d’obtenir une imagerie de la fonction pulmonaire avec une spécificité régionalede 5,6. Il produit une aimantation nucléaire élevée hors équilibre du gaz en quantités de litres. Le gaz inerte est ensuite inhalé par un sujet à l’intérieur du scanner IRM pour une seule respiration et est directement imagé par le scanner. Ainsi, le gaz inhalé est directement imagé, par opposition au tissu lui-même. Cette technique a été utilisée pour évaluer la ventilation pulmonaire dans de nombreuses maladies, notamment l’asthme, la bronchopneumopathie chronique obstructive (MPOC), la fibrose kystique, la fibrose pulmonaire idiopathique, la maladie à coronavirus 2019 (COVID-19) et bien d’autres3. En décembre 2022, l’IRM HP 129Xe a été approuvée par la FDA des États-Unis en tant qu’agent de contraste de ventilation IRM à utiliser aux États-Unis d’Amérique (USA) chez les adultes et les patients pédiatriques âgés de 12 ans et plus7. Les médecins peuvent désormais utiliser l’IRM 129Xe pour mieux soigner les patients grâce à des plans de traitement améliorés/personnalisés.
Historiquement, l’IRM clinique se concentre exclusivement sur l’imagerie des noyaux d’hydrogène (protons) qui sont abondants dans presque tous les viscères humains. Les scanners IRM, les séquences et le contrôle de la qualité sont généralement gérés par le fabricant du scanner dans le cadre de la licence et de la garantie du site. Cependant, 129Xe nécessite un scanner IRM multinucléaire et a nécessité une équipe de recherche dédiée pour opérationnaliser l’hyperpolariseur, des bobines de radiofréquence (RF) sur mesure, des séquences d’impulsions dédiées et un logiciel de reconstruction/analyse hors ligne. Chacun de ces composants peut être fourni par des fournisseurs tiers ou développé en interne. Ainsi, la charge du contrôle de la qualité incombe généralement à l’équipe de recherche de 129Xe plutôt qu’au fabricant du scanner ou à un tiers individuel. L’acquisition cohérente de données 129Xe de haute qualité est donc particulièrement difficile, car chaque composant du processus d’IRM 129Xe introduit un potentiel d’erreur, qui doit être surveillé de près par l’équipe 129Xe. Non seulement ces situations peuvent être extrêmement frustrantes, car les chercheurs doivent dépanner et rechercher les causes possibles de tout problème qui aurait pu survenir, mais elles peuvent être très coûteuses car cela ralentit l’imagerie des patients et le recrutement des sujets. Certains coûts associés au dépannage impliquent les coûts de temps d’IRM, l’hyperpolarisation du 129Xe, qui implique la consommation de différents gaz, et l’utilisation de matériaux. De plus, avec l’approbation récente de la FDA et la croissance de l’imagerie 129Xe, il est nécessaire de fournir un protocole standardisé pour le contrôle de la qualité afin d’éviter les problèmes et les contretemps courants dans l’opération 129Xe 8,9.
Ici, nous présentons certains des problèmes les plus fréquemment rencontrés dans l’IRM 129Xe, y compris les défaillances de la bobine RF, l’émergence de divers profils de bruit qui conduisent à un faible rapport signal/bruit (SNR) et des images de mauvaise qualité10. Notre objectif est de fournir des directives et des protocoles concis de contrôle de la qualité (CQ) pour assurer l’acquisition de données d’image de haute qualité et résoudre certains des problèmes les plus courants qui peuvent survenir dans l’IRM 129Xe. Les informations fournies ici sont également pertinentes pour le dépannage de l’hélium-3 hyperpolarisé.
Le protocole décrit ci-dessous respecte les lignes directrices et les normes établies par le Comité d’éthique de la recherche humaine de l’Université du Missouri, garantissant la conduite éthique de l’étude et la protection des droits, de la sécurité et du bien-être des participants.
REMARQUE : Pour garantir la fiabilité et la précision des études d’IRM au xénon hyperpolarisé, il est essentiel d’effectuer une caractérisation rigoureuse des images acquises, de suivre un protocole complet et d’utiliser des stratégies de dépannage efficaces. La séance d’imagerie comprend plusieurs étapes : l’hyperpolarisation gazeuse, la communication bobine/scanner 129Xe, la spectroscopie 129Xe, l’acquisition de données, la reconstruction des données et l’analyse d’images. Le protocole commence par discuter en détail de ces étapes et met en évidence les précautions nécessaires et les stratégies de dépannage pour optimiser le processus d’imagerie. En suivant ces procédures et en intégrant des stratégies de dépannage expertes, les chercheurs peuvent optimiser le processus d’imagerie et surmonter les défis qui peuvent survenir lors d’études d’IRM au xénon hyperpolarisé. Ensuite, nous aborderons les pratiques de dépannage courantes qui peuvent survenir dans plusieurs cas de données sous-optimales.
1. Étapes clés d’une étude IRM HPG complète
Nous avons présenté ici un bref aperçu des processus impliqués dans une séance typique d’imagerie hyperpolarisée 129Xe. Les recommandations détaillées du protocole du 129Xe Clinical Trials Consortium sont données dans Niedbalski et al.11.
2. Étapes de dépannage
REMARQUE : Bien que le protocole décrive certaines procédures de contrôle de la qualité (CQ) dans l’IRM 129Xe hyperpolarisée, un dépannage peut être nécessaire en raison de problèmes, d’anomalies et de défis émergents. Toute erreur ou faux pas dans le processus peut avoir un effet d’entraînement, avoir un impact sur les étapes suivantes et entraîner des problèmes tels que des images manquantes ou de mauvaise qualité avec une faible intensité de signal, des niveaux de bruit élevés ou une perte complète du signal. Pour relever ces défis, des approches stratégiques devraient être employées afin d’identifier et d’étudier les problèmes en détail.
La figure 4 illustre les résultats de l’analyse de caractérisation du bruit effectuée sur le balayage du bruit. Le graphique montre l’impact du bruit régulier et irrégulier sur l’espace k, où l’écart par rapport à la droite de référence idéale y=x est observé. Le bruit régulier conduit à un motif continu dans l’espace k, tandis que le bruit irrégulier entraîne des valeurs aberrantes de grande valeur dans le diagramme QQ.
Passons à la
La capacité à résoudre les problèmes d’IRM 129Xe est une compétence nécessaire et peut aider à atténuer les problèmes en temps réel. Jusqu’à ce qu’une infrastructure de gaz hyperpolarisée puisse être achetée auprès d’une seule partie et obtenir le soutien des fabricants de scanners, ces tâches de contrôle de la qualité relèvent de la seule responsabilité des laboratoires individuels. L’objectif de ce manuscrit est de fournir au lecteur des pratiques et des suggestions utiles pour ...
Robert Thomen a fourni des services de conseil à Polarean, LLC.
Aucun.
Name | Company | Catalog Number | Comments |
Polarization measurement station | Polerean | 42881 | https://polarean.com/ |
Pressure vessele with plunger valve | Ace glass | 8648-85 | https://www.aceglass.com/html/3dissues/Pressure_Vessels/offline/download.pdf |
Tedlar bag | Jensen inert | GST381S-0707TJO | http://www.jenseninert.com/ |
Xenon Hyperpolarizer 9820 | Polerean | 49820 | https://polarean.com/ |
Xenon loop coil | Clinical MR Solutions | Custom device | https://www.sbir.gov/sbc/clinical-mr-solutions-llc |
Xenon vest coil | Clinical MR Solutions | Custom device | https://www.sbir.gov/sbc/clinical-mr-solutions-llc |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon