A subscription to JoVE is required to view this content. Sign in or start your free trial.
Intravital microscopy is a powerful tool that provides insight into both the temporal and spatial relationships of rapid and/or sequential processes. Herein, we describe a protocol to assess both protein-protein interactions and platelet-neutrophil-endothelial interactions in liver sinusoids in a murine model of experimental sepsis (endotoxemia).
Inflammation and thrombosis are complex processes that occur primarily in the microcirculation. Although standard histology may provide insight into the end pathway for both inflammation and thrombosis, it is not capable of showing the temporal changes that occur throughout the time course of these processes. Intravital microscopy (IVM) is the use of live-animal imaging to gain temporal insight into physiologic processes in vivo. This method is particularly powerful when assessing cellular and protein interactions within the circulation due to the rapid and sequential events that are often necessary for these interactions to occur. While IVM is an extremely powerful imaging methodology capable of viewing complex processes in vivo, there are a number of methodological factors that are important to consider when planning an IVM study. This paper outlines the process of conducting intravital imaging of the liver, identifying important considerations and potential pitfalls that may arise. Thus, this paper describes the use of IVM to study platelet-leukocyte-endothelial interactions in liver sinusoids to study the relative contributions of each in different models of acute liver injury.
Inflammation and thrombosis are complex processes that occur primarily in the microcirculation. This protocol outlines the surgical preparation that allows for imaging of the liver microvasculature in vivo. Although standard histology may provide insight into the end pathways for both inflammation and thrombosis, it cannot show the temporal changes that occur throughout the process. Furthermore, this method is particularly powerful when assessing the transient cellular and protein interactions that occur within the microvascular circulation due to its ability to capture, via videomicroscopy, the often rapid and sequential interactions occurring within biological systems. This paper describes the use of intravital microscopy to study platelet-leukocyte-endothelial interactions in liver sinusoids to study the relative contribution of each in different models of acute liver injury.
While this surgical preparation and imaging modality have the potential to be adapted to a host of inflammatory and pathological models, two models of vascular inflammation are outlined here: an endotoxemia model of murine sepsis and acetaminophen (APAP)-induced liver injury. The injection of endotoxin (lipopolysaccharide; LPS) to induce an experimental model of murine sepsis began as early as the 1930s with its isolation and subsequent exploration as a key molecule in the progression of sepsis1. While this model is limited in that LPS is only a single component of Gram-negative bacteria, this is a widely accepted and utilized method that is relatively simple and quick to perform. Furthermore, it rapidly and accurately replicates the physiological manifestations of sepsis1. Given the role intestinal endotoxin absorption plays in the development of liver disease and inflammation2, this is a superb model for studying platelet-leukocyte-endothelial interactions in the mouse liver.
In addition to an LPS model of sepsis, APAP overdose provides an excellent model for the study of pathological cell-cell interactions in the liver. APAP overdose can lead to acute liver failure, marked by thrombocytopenia and platelet accumulation in the liver, subsequently blocking leukocyte-mediated liver recovery3. While the surgical preparation and imaging methodology for this model can be adapted for a number of biological questions and to study various pathological processes, both the LPS model of sepsis and APAP-induced liver injury are excellent models for the study of platelet-leukocyte-endothelial interactions in vivo.
IVM has some inherent advantages over standard histological techniques. While standard histological methods allow the study of whole or sectioned tissue samples and the appreciation of proteins and tissue architecture, these methodologies come with limitations. By design, these processes require tissue processing, which has the potential to distort or mask what is found in the living system. Tissue must be fixed during histological preparation, introducing the potential for fixation artifacts or enhanced autofluorescence. Fixation can also lead to intracellular changes in tissue, and the potential for improper fixation may lead to tissue degradation. Furthermore, histologic methods lack the potential for directly studying the temporal aspects of protein or cellular interactions and have the potential of missing ephemeral or infrequent interactions.
Conversely, fluorescence intravital microscopy allows one to avoid many of the complications and limitations inherent in standard histology. IVM avoids fixation and, thereby, the artifacts or tissue degradation that can occur during histological preparation. By design, it also allows for the imaging of tissues within the living biological system, and, as such, tissue isolation and sectioning are not required. Furthermore, it allows for the imaging and study of transient or infrequent processes, which can be difficult or impossible to capture using histology. This IVM method can also be used to capture and identify sequential processes (e.g., platelet- or leukocyte-initiated interactions resulting in platelet-leukocyte aggregates bound to vascular endothelium). Finally, this method can be adapted to a host of imaging systems. Depending upon the needs of the study and the desired dataset, after surgical preparation, the externalized liver can be placed on almost any imaging system desired. We have successfully applied this protocol to imaging using widefield fluorescence microscopy, spinning disk microscopy, laser scanning confocal microscopy using a resonance head scanner, as well as two-photon microscopy. However, there is no reason to believe that this method should be limited to the aforementioned microscopy systems.
This methods paper outlines a protocol for IVM, which was used previously to study platelet-leukocyte-endothelial interactions in the mouse liver. This protocol has been used to compare temporal platelet-endothelial adhesion of platelets, either labeled with fluorescently conjugated antibodies or genetically modified for endogenous fluorescence4. This protocol has been used to evaluate transient platelet-leukocyte-endothelial interactions in the liver sinusoids in an endotoxemic model of liver inflammation and to co-localize P-selectin and recombinant protein. In addition, this protocol made it possible to determine whether the differences seen in neutrophil density using standard histology were a result of differences in red blood cell velocities (as a surrogate for volumetric flow rate)5. Finally, this method has been used to evaluate platelet recruitment by Kupffer cells in the liver sinusoids in an acute model of APAP-induced liver injury6. This body of work would not have been possible using standard histological methods. As stated, this protocol can be adapted for a variety of imaging systems, and, with proper surgical preparation, fluorescent antibody choice, and imaging settings, this protocol is highly reliable and reproducible for the study of liver pathology.
All animal protocols were approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine and the Research & Development Committee of the Michael E. DeBakey Veterans Affairs Medical Center. All experiments are terminal, with euthanasia performed at the end under a surgical plane of anesthesia. See the Table of Materials for details related to all materials, reagents, and equipment used in this protocol.
1. Preparation of antibodies and dyes
2. Intraperitoneal endotoxin injection
NOTE: To evaluate platelet-neutrophil-endothelial interactions in the liver sinusoids in an experimental model of murine sepsis, endotoxin injection can be used.
3. Induction and maintenance of anesthesia of the animals and euthanasia
4. Catheterization of the jugular vein and trachea
5. Exteriorization of the liver
6. Liver intravital microscopy imaging
NOTE: This protocol uses a laser scanning confocal microscope with a two-way resonance head scanner for intravital microscopy. To stabilize the resonance head frequency, turn on the system for at least 30 min prior to imaging. Different systems may have different capabilities. Discussion of these is outside the scope of this article. Contact the equipment representatives for the technical details of specific systems.
7. Image analysis
NOTE: ImageJ/FIJI was used to process all of the images in this paper. FIJI (fiji.sc) is an open-source version of Image J (imagej.nih.gov) that has more functionality through the use of additional plugins and macros13.
Assessing the effect of vimentin rod domain in leukocyte adhesion to inflamed endothelium
Leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) binding to endothelial and platelet P-selectin occurs during the acute phase of sepsis-induced liver injury inflammation. However, the recombinant human rod domain of vimentin (rhRod) has been shown to bind to P-selectin and block leukocyte adhesion to both endothelium and platelets. This protocol was utilized in a mouse model of sepsis to visualize the real-...
The purpose of this methods paper is to outline the necessary steps required to reliably capture high-resolution intravital images and videos of the mouse liver under homeostatic conditions and following the administration of endotoxin or APAP. While this protocol has allowed for the consistent production of data on platelet-leukocyte-endothelial interactions in the liver, there are a number of critical steps required for success, as well as potential pitfalls that are important to avoid when using this imaging paradigm....
The authors have no conflicts of interest to disclose. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.
This work was supported by NIH/NIGMS GM-123261 (FWL) and NIH/NHLBI HL139425 (JC). Research support was also funded by NIH/NHLBI HL116524.
Name | Company | Catalog Number | Comments |
Surgical Supplies | |||
2" x 2" non-woven sponges | McKesson Med. Surg | 92242000 | For liver isolation |
#4-0 silk braided suture with needle | SOFSILK | N/A | 4-0 Softsilk coated braided black, nonabsorbable: C-1 cutting needle |
#4-0 silk braided suture without needle | Ethicon | N/A | 4-0 Black braided silk, nonabsorbable |
21 G blunt needle (0.5 inch) | SAI Infusion Technologies | B21-50 | This is used to attach to the end of the tracheostomy tube to allow for connection to the ventilator. An alternative source is Instech |
23 G blunt needle (0.5 inch) | SAI Infusion Technologies | B23-50 | This is used for the vascular catheter to allow for connection to a syringe. An alternative source is Instech |
Dissecting Scissors (Pointed Tip) | Kent Scientific | INS600393-G | Micro Dissecting Scissors; Carbide Blades; Straight; Sharp Points; 24 mm Blade Length; 4 1/2" Overall Length |
McPherson-Vannas Micro Scissors (Vannas) | Kent Scientific | INS600124 | These are useful for creating the openings in the trachea and vessels |
Polyethylene tubing 10 | Instech | BTPE-10 | This is used to make the intravascular portion of the catheter. An alternative source is BD Intramedic |
Polyethylene tubing 50 | Instech | BTPE-50 | This is used to make the extravascular portion of the catheter. An alternative source is BD Intramedic |
Polyethylene tubing 90 | Instech | BTPE-90 | This is used to make the tracheostomy tube. An alternative source is BD Intramedic |
USP grade sterile normal saline | Coviden | 8881570121 | Hospira 0.0% Sodium Chloride Injection, USP |
Microscopy Supplies | |||
Isoflurane delivery system and ventilator | Kent Scientific | Somnosuite | Combination rodent ventilator and volatile anesthetic delivery system |
Foam spacer for warming pad during microscopy | N/A | N/A | This spacer should be cut from high quality foam, should fit around the liver microscope tray and specific height dimensions are dependent upon the microscope system |
Laser scanning confocal microscope system with resonance head scanner | Olympus | FV3000 | Although we describe the use of an Olympus FV3000 using a resonance head scanner, this protocol with work with most imaging systems |
Liver Microscope Tray | N/A | N/A | The liver microscope tray was designed for an inverted microscope |
Antibodies & Related Reagents | |||
Brilliant Violet 421/anti-mouse Ly6G antibody | BioLegend | 127628 | 3 µg/mouse. To label neutrophils |
BV421/F4/80 antibody | BioLegend | 123132 | 0.75 mg/kg. To label Kupffer cells |
Dulbecco's phosphate buffered saline w/o calcium or magnesium | Gibco/ThermoFisher Scientific | 14190144 | Used as dialysate to remove sodium azide from antibodies |
DyLight649/anti-GPIbβ antibody | emfret Analytics | X649 | 3 µg/mouse. To label platelets |
DyLight488/anti-mouse GPIbβ antibody | emfret Analytics | X488 | 6 µg/mouse. To label platelets |
Endotoxin from Escherichia coli serotype O111:B4 | Sigma-Aldrich | L3024 | 5 mg/kg; Potency of endotoxin may vary from lot to lot. Therefore, the same lot should be used for a series of experiments to minimize variation due to endotoxin lot |
PerCP-eFluor 710/anti-mouse P-selectin antibody | Invitrogen | 46-0626-82 | 4 µg/mouse. To label P-selectin |
Slide-a-Lyzer 7,000 MWCO cassette | Thermo Scientific | 66370 | Used to dialyze antibodies to remove sodium azide |
Texas Red-labeled dextran | Sigma-Aldrich | T1287 | ~150 kDa; 250 µg/mouse |
TRITC/bovine serum albumin | Sigma-Aldrich | A2289 | 500 µg/mouse. Dilute to a stock concentration of 50 mg/mL (5%) in normal saline. Used to label the vasculature. It may leak into the interstitial space more readily than high molecular weight dextran during inflammation |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved