Method Article
חלבוני קרח מחייבים (IBPs), הידוע גם כחלבוני רדיאטור, לעכב צמיחה וקרח הם תוסף מבטיח לשימוש בהקפאה קריוגנית של רקמות. הכלי העיקרי המשמש לבדיקת IBPs הוא osmometer nanoliter. פתחנו שלב בית מעוצב קירור רכוב על מיקרוסקופ אופטי ונשלטתי באמצעות שגרת LabVIEW שהותקן. Osmometer nanoliter מתואר כאן מניפולצית טמפרטורת המדגם באופן אולטרה רגיש.
Ice-binding proteins (IBPs), including antifreeze proteins, ice structuring proteins, thermal hysteresis proteins, and ice recrystallization inhibition proteins, are found in cold-adapted organisms and protect them from freeze injuries by interacting with ice crystals. IBPs are found in a variety of organism, including fish1, plants2, 3, arthropods4, 5, fungi6, and bacteria7. IBPs adsorb to the surfaces of ice crystals and prevent water molecules from joining the ice lattice at the IBP adsorption location. Ice that grows on the crystal surface between the adsorbed IBPs develops a high curvature that lowers the temperature at which the ice crystals grow, a phenomenon referred to as the Gibbs-Thomson effect. This depression creates a gap (thermal hysteresis, TH) between the melting point and the nonequilibrium freezing point, within which ice growth is arrested8-10, see Figure 1. One of the main tools used in IBP research is the nanoliter osmometer, which facilitates measurements of the TH activities of IBP solutions. Nanoliter osmometers, such as the Clifton instrument (Clifton Technical Physics, Hartford, NY,) and Otago instrument (Otago Osmometers, Dunedin, New Zealand), were designed to measure the osmolarity of a solution by measuring the melting point depression of droplets with nanoliter volumes. These devices were used to measure the osmolarities of biological samples, such as tears11, and were found to be useful in IBP research. Manual control over these nanoliter osmometers limited the experimental possibilities. Temperature rate changes could not be controlled reliably, the temperature range of the Clifton instrument was limited to 4,000 mOsmol (about -7.5 °C), and temperature recordings as a function of time were not an available option for these instruments.
We designed a custom-made computer-controlled nanoliter osmometer system using a LabVIEW platform (National Instruments). The cold stage, described previously9, 10, contains a metal block through which water circulates, thereby functioning as a heat sink, see Figure 2. Attached to this block are thermoelectric coolers that may be driven using a commercial temperature controller that can be controlled via LabVIEW modules, see Figure 3. Further details are provided below. The major advantage of this system is its sensitive temperature control, see Figure 4. Automated temperature control permits the coordination of a fixed temperature ramp with a video microscopy output containing additional experimental details.
To study the time dependence of the TH activity, we tested a 58 kDa hyperactive IBP from the Antarctic bacterium Marinomonas primoryensis (MpIBP)12. This protein was tagged with enhanced green fluorescence proteins (eGFP) in a construct developed by Peter Davies' group (Queens University)10. We showed that the temperature change profile affected the TH activity. Excellent control over the temperature profile in these experiments significantly improved the TH measurements. The nanoliter osmometer additionally allowed us to test the recrystallization inhibition of IBPs5, 13. In general, recrystallization is a phenomenon in which large crystals grow larger at the expense of small crystals. IBPs efficiently inhibit recrystallization, even at low concentrations14, 15. We used our LabVIEW-controlled osmometer to quantitatively follow the recrystallization of ice and to enforce a constant ice fraction using simultaneous real-time video analysis of the images and temperature feedback from the sample chamber13. The real-time calculations offer additional control options during an experimental procedure. A stage for an inverted microscope was developed to accommodate temperature-controlled microfluidic devices, which will be described elsewhere16.
The Cold Stage System
The cold stage assembly (Figure 2) consists of a set of thermoelectric coolers that cool a copper plate. Heat is removed from the stage by flowing cold water through a closed compartment under the thermoelectric coolers. A 4 mm diameter hole in the middle of the copper plate serves as a viewing window. A 1 mm diameter in-plane hole was drilled to fit the thermistor. A custom-made copper disc (7 mm in diameter) with several holes (500 μm in diameter) was placed on the copper plate and aligned with the viewing window. Air was pumped at a flow rate of 35 ml/sec and dried using Drierite (W.A. Hammond). The dry air was used to ensure a dry environment at the cooling stage. The stage was connected via a 9 pin connection outlet to a temperature controller (Model 3040 or 3150, Newport Corporation, Irvine, California, US). The temperature controller was connected via a cable to a computer GPIB-PCI card (National instruments, Austin, Texas, USA).
0. הליכים המקדמיים
1. שלב הקירור Set-up
2. לדוגמא הכנה
3. מדידת פעילות TH
4. מדידה של פעילות TH תלוית זמן
מדידה של תלות זמן TH
Osmometer nanoliter LabVIEW המופעל מאפשר ביצוע מדידות פעילות TH מדויקות. שיעור הפחתת הטמפרטורה הקבועה מותר המדידה של תלות זמן TH. בקרת הטמפרטורה המדויקת מופעלת על ידי osmometer nanoliter הייתה חיונית לניסויים אלה. זמן החשיפה של גביש קרח לIBPs בפתרון מוגדר כפרק זמן מהיווצרות הגבישים (סופו של תהליך ההיתוך) עד הצמיחה הפתאומית של קרח סביב הגביש (פרץ גביש). מצאנו כי זמן החשיפה של גבישי הקרח לIBPs מושפע פעילות TH מכריע. תקופות קצרות של חשיפת IBP (כמה שניות) המיוצרות על פעילות TH נמוכה בפתרון Mp IBP-GFP (2.4 מיקרומטר) (איור 5). פעילות TH גדלה עם זמן החשיפה IBP עד שהגיע לרמה של 4 חשיפת IBP דקות. בריכוזים גבוהים יותר IBP, הצלחתau, הושג בזמנים קצרים יותר.
האיור 1. IBPs ממחיש תרשים סכמטי adsorbed לקרח. אמץ באישור 10.
איור 2. שלב הקירור. ) מחובר לצינורות במיקרוסקופ. ב) בלי להוביל העליון. ג) תרשים סכמטי.
איור 3. תמונת מסך של ממשק LabVIEW. Clאיכס כאן לצפייה בדמות גדולה.
איור 4. גרף יציבות טמפרטורה. בקר הטמפרטורה נקבע שתוריד את טמפרטורת 0.01 ° C בכל 15 שניות.
איור 5. פעילות TH Mp IBP כפונקציה של זמן חשיפת גביש קרח לIBPs. כל נקודת זמן היא ממוצעת של 3-6 ניסויים.
עבודה זו ממחישה את הפעולה של osmometer nanoliter מבוקר מחשב המאפשר מדידות מדויקות של פעילות TH עם בקרת טמפרטורה יוצאת דופן. בכל מערכת רגישה לטמפרטורה, גרדיאנטים בטמפרטורה רצוי יש להימנע. כדי להימנע משיפועי טמפרטורה במנגנון שהוצג כאן, אגל פתרון המבחן חייב להיות ממוקם במרכז חור בשלב קירור דיסק הנחושת (שלב 2.7). בנוסף, הגביש היחיד צריך להיות במרכז של רביב ולא ליד הקצוות (ברוב המקרים, זה לא יקרה באופן ספונטני). תלות הזמן המתואר מצביעה על כך שקצב הקירור עשוי להשפיע על קריאות ה. לפיכך, אנו ממליצים לרבות דוח של הזמן שבו הגביש נחשף לפתרון לפני הקירור, כמו גם את קצב הקירור. אנחנו בדרך כלל חיכינו 10 דקות לפני ramping את הטמפרטורה ב0.01 ° C שלבים כל 4 שניות.
את שיתוף LabVIEW המבוקרשלב oling הותאם לשימוש עם מיקרוסקופ ההפוך שבו יכולים להיות שהופעלו התקני microfluidic תרמית. מערכת זו מאפשרת ביצוע הניסויים בexchange פתרון של גבישי קרח וIBPs מתויגים עם 9 eGFP, 10, 16. מערכת LabVIEW המבוקרת עשויה להיות מותאמת לשלב קליפטון על ידי חיבור בקר 3040 טמפרטורה באמצעות מעגל חשמלי ייעודי הסתגלות. מערכת כזו פעלה בדייויס 17 המעבדה. תוכנת LabVIEW והעיצוב הייעודי התאמת המעגל החשמלי לבמת קליפטון זמין לפי בקשה.
לסיכום, אנו מתארים osmometer nanoliter המאפשר שליטה הרגישה ומניפולציה של טמפרטורה וקצב עליית הטמפרטורה והירידה (עם רגישות 0.002 ° C), בתיאום עם ממשק וידאו דרך שגרת LabVIEW לניתוח בזמן אמת. מערכת זו יכולה לבצע ניסויים לשעתק שיעור בשליטה כי הם importanלא לחקירת קינטיקה של אינטראקציות IBP עם קרח. ניסויים כאלה יכולים לטפל בכמה בעיות ארוכות התווכחו מקיפות את מנגנון פעולה של IBPs.
אין ניגודי האינטרסים הכריזו.
מחקר זה נתמך על ידי הקרן הלאומי למדע, NSF, וERC. ברצוננו להודות לעזרה טכנית שלב הטמפרטורה מרנדי מילפורד, מייקל קורן, דאג שייפר, וג'רמי דניסון. סיוע בפיתוח תוכנה סופק על ידי אור חן, די שו, Rajesh Sannareddy, וSumit Bhattachary. ברצוננו להודות לעמיתי פרופ 'פיטר ל' דייויס וד"ר לורי א גרהם לחלבון Mp IBP ודיונים מועילים. אנו מודים גם לחברי מעבדת ד"ר מאיה הבר דולב, Yangzhong צ'ין, ד"ר Yeliz סליק, ד"ר נטליה Pertaya, אורטל Mizrahy, וגיא שלומית למשוב מהמשתמשים שלהם.
Name | Company | Catalog Number | Comments |
שם | חברה | מספר קטלוגים / דגם | תגובות |
טבילת שמן מהסוג B | מעבדות Cargille | 16484 | |
Drierite | WA המונד Drierite | 043063 2270g | |
תמיסת ניקוי מייקרו 90 | קולמן לבן זוג | EW-18100-11 | |
נימי חולץ | Narishige | PB-7 | |
צינורות זכוכית נימים | המותג GNBH | 7493 21 | 75 מ"מ אורך, 1.15 קוטר |
טמפרטורהבקר | ניופורט, אירווין, קליפורניה, ארצות הברית | דגם 3040 | דגם 3040 |
מיקרוסקופ אור | אולימפוס | דגם BH2 | |
מטרת 10x | אולימפוס | S תכנית 10, 0.3, 160/0.17 | |
מטרת 50x | ניקון | CF תכנית, 50X/0.55 EPI ELWD | |
CCD מצלמה | Provideo | CVC-140 | |
צינורות Tygon | Saint-Gobain, פריז, צרפת | Tygon הגיבוש Tubing S-50-HL | |
זכוכית המזרק (2 מ"ל) | Poulten-גרף, ורטהיים, גרמניה | 7 10227 | |
כרטיס PCI-GPIB | המכשירים לאומיים, אוסטין, טקסס, ארה"ב | 778032-01 | |
וידאו המסגרת grabber IMAQ-PCI-1407 | המכשירים לאומיים, אוסטין, טקסס, ארה"ב | 322156B-01 | |
תוכנת עיצוב מערכת LabVIEW | המכשירים לאומיים, אוסטין, טקסס, ארה"ב | גרסה 8 | |
תוכנת מחבר DIVX | DivX LLC, סן דייגו, קליפורניה, ארה"ב |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved