JoVE Logo
Faculty Resource Center

Sign In

CITY COLLEGE OF NEW YORK

11 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

Electrode Positioning and Montage in Transcranial Direct Current Stimulation
Alexandre F. DaSilva 1, Magdalena Sarah Volz 2,3, Marom Bikson 4, Felipe Fregni 2
1Headache & Orofacial Pain Effort (H.O.P.E.), Biologic & Material Sciences, School of Dentistry, University of Michigan , 2Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 3Charité, University Medicine Berlin, 4Department of Biomedical Engineering, The City College of New York

Transcranial direct current stimulation (tDCS) is an established technique to modulate cortical excitability1,2. It has been used as an investigative tool in neuroscience due to its effects on cortical plasticity, easy operation, and safe profile. One area that tDCS has been showing encouraging results is pain alleviation 3-5.

image

Biology

Isolation and Biophysical Study of Fruit Cuticles
Subhasish Chatterjee 1, Sayantani Sarkar 1, Julia Oktawiec 1, Zhantong Mao 1, Olivia Niitsoo 2, Ruth E. Stark 1
1Department of Chemistry, City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, 2Department of Chemical Engineering, City College of New York

Aerial plant organs are protected by the cuticle, a supramolecular biopolyester-wax assembly. We present protocols to monitor selective removal of epi- and intracuticular waxes from tomato fruit cuticles on molecular and micro scales by solid-state NMR and atomic force microscopy, respectively, and to assess the cross-linking capacity of engineered cuticular biopolyesters.

image

Medicine

Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS)
Mauricio F. Villamar 1,2, Magdalena Sarah Volz 1,3, Marom Bikson 4, Abhishek Datta 1,4, Alexandre F. DaSilva *5, Felipe Fregni *1
1Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 2School of Medicine, Pontifical Catholic University of Ecuador, 3Charité University Medicine Berlin, 4The City College of The City University of New York, 5Headache & Orofacial Pain Effort (H.O.P.E.), Biologic & Materials Sciences, School of Dentistry, University of Michigan

High-definition transcranial direct current stimulation (HD-tDCS), with its 4x1-ring montage, is a noninvasive brain stimulation technique that combines both the neuromodulatory effects of conventional tDCS with increased focality. This article provides a systematic demonstration of the use of 4x1 HD-tDCS, and the considerations needed for safe and effective stimulation.

image

Biology

Analysis of RNA Processing Reactions Using Cell Free Systems: 3' End Cleavage of Pre-mRNA Substrates in vitro
Joseph Jablonski 1, Mark Clementz 1, Kevin Ryan 2, Susana T. Valente 1
1Department of Infectious Diseases, The Scripps Research Institute, 2Department of Chemistry, City College of New York

RNA polymerase II synthesizes a precursor RNA that extends beyond the 3' end of the mature mRNA. The end of the mature RNA is generated cotranscriptionally, at a site dictated by RNA sequences, via the endonuclease activity of the cleavage complex. Here, we detail the method to study cleavage reactions in vitro.

image

Medicine

A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS) in Multiple Sclerosis (MS)
Margaret Kasschau 1,2, Kathleen Sherman 1,2, Lamia Haider 2, Ariana Frontario 1,2, Michael Shaw 1,2, Abhishek Datta 3, Marom Bikson 4, Leigh Charvet 1,2
1Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU Langone Medical Center, 2Department of Neurology, Stony Brook Medicine, 3Soterix Medical, Inc, 4Department of Biomedical Engineering, The City College of New York

The goal of this pilot study is to describe a protocol for the remotely-supervised delivery of transcranial direct current stimulation (tDCS) so that the procedure maintains standards of in-clinic practice, including safety, reproducibility, and tolerability. The feasibility of this protocol was tested in participants with multiple sclerosis (MS).

image

Neuroscience

Remotely Supervised Transcranial Direct Current Stimulation: An Update on Safety and Tolerability
Michael T. Shaw 1, Margaret Kasschau 2, Bryan Dobbs 1, Natalie Pawlak 1, William Pau 1, Kathleen Sherman 1, Marom Bikson 3, Abhishek Datta 4, Leigh E. Charvet 1
1New York University, Langone Medical Center, 2Stony Brook Medicine, 3City College of New York, 4Soterix Medical

This manuscript provides an updated remote supervision protocol that enables participation in transcranial direct current stimulation (tDCS) clinical trials while receiving treatment sessions from home. The protocol has been successfully piloted in both patients with multiple sclerosis and Parkinson's disease.

image

Neuroscience

Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations
Bashar W. Badran *1,2,3, Alfred B. Yu *2, Devin Adair 1, Georgia Mappin 3, William H. DeVries 3, Dorothea D. Jenkins 4, Mark S. George 3,5,6, Marom Bikson 1
1Department of Biomedical Engineering, City College of New York, 2U.S. Army Research Laboratory, Aberdeen Proving Ground, 3Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, 4Department of Pediatrics, Medical University of South Carolina, 5Department of Neurology, Medical University of South Carolina, 6Ralph H. Johnson VA Medical Center

A methodological description of the technique, potential targets, and proper administration of transcutaneous auricular vagus nerve stimulation (taVNS) on the human ear is described.

image

Medicine

Updated Technique for Reliable, Easy, and Tolerated Transcranial Electrical Stimulation Including Transcranial Direct Current Stimulation
Helen Borges 1, Alexandra Dufau 1,2, Bhaskar Paneri 1, Adam J. Woods 3, Helena Knotkova 4,5, Marom Bikson 1
1Department of Biomedical Engineering, The City College of New York, CUNY, 2Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, 3McKnight Brain Institute, University of Florida, 4MJHS Institute for Innovation in Palliative Care, 5Department of Family and Social Medicine, Albert Einstein College of Medicine

When administering transcranial direct current stimulation (tDCS), reproducible electrode preparation and placement are vital for a tolerated and effective session. The purpose of this article is to demonstrate updated modern setup procedures for the administration of tDCS and related transcranial electrical stimulation techniques, such as transcranial alternating current stimulation (tACS).

image

Behavior

Transcranial Direct Current Stimulation for Online Gamers
Sang Hoon Lee *1, Jooyeon Jamie Im *2, Jin Kyoung Oh 2, Eun Kyoung Choi 2, Sujung Yoon 3, Marom Bikson 4, In-Uk Song 5, Hyeonseok Jeong 2, Yong-An Chung 2
1Department of Radiology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 2Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 3Department of Brain and Cognitive Sciences, Ewha Womans University, 4Department of Biomedical Engineering, The City College of New York, 5Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea

We present a protocol and a feasibility study for applying transcranial direct current stimulation (tDCS) and neuroimaging assessment in online gamers.

image

Neuroscience

Measuring Contralateral Silent Period Induced by Single-Pulse Transcranial Magnetic Stimulation to Investigate M1 Corticospinal Inhibition
Ingrid Rebello-Sanchez 1, Joao Parente 1, Kevin Pacheco-Barrios 1,2, Anna Marduy 1, Danielle Carolina Pimenta 1, Daniel Lima 1, Eric Slawka 1, Alejandra Cardenas-Rojas 1, Gleysson Rodrigues Rosa 1, Kamran Nazim 3, Abhishek Datta 3,4, Felipe Fregni 1
1Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 2Universidad de Investigación para la Generación y Síntesis de Evidencia en Salud, Universidad San Ignacio de Loyola, 3Research and Development, Soterix Medical, 4City College of New York

Contralateral silent period (cSP) assessment is a promising biomarker to index cortical excitability and treatment response. We demonstrate a protocol to assess cSP intended for studying M1 corticospinal inhibition of upper and lower limbs.

image

Neuroscience

Using Home-based, Remotely Supervised, Transcranial Direct Current Stimulation for Phantom Limb Pain
Kevin Pacheco-Barrios *1,2, Daniela Martinez-Magallanes *1, Cristina Xicota Naqui 1,3, Marianna Daibes 1, Elly Pichardo 1, Alejandra Cardenas-Rojas 1, David Crandell 4, Anahita Dua 5, Abhishek Datta 6,7, Wolnei Caumo 8,9,10, Felipe Fregni 1
1Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 2Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, 3Nursing Department, Universitat Internacional de Catalunya, 4Spaulding Rehabilitation Hospital, Harvard Medical School, 5Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Harvard Medical School, 6Research and Development, Soterix Medical, 7City College of New York, 8Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), 9Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre (HCPA), 10Pain and Palliative Care Service, Hospital de Clinicas de Porto Alegre (HCPA)

The goal of this study is to describe a protocol for the home-based delivery of remotely supervised transcranial direct current stimulation (RS-tDCS) conserving the standard procedures of in-clinic practice, including safety, reproducibility, and tolerability. The participants included will be patients with phantom limb pain (PLP).

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved