Sign In

Harvard-MIT Division of Health Sciences and Technology

2 ARTICLES PUBLISHED IN JoVE

image

Bioengineering

Studying Cell Rolling Trajectories on Asymmetric Receptor Patterns
Chia-Hua Lee 1, Suman Bose 2, Krystyn J. Van Vliet 1, Jeffrey M. Karp 3, Rohit Karnik 2
1Department of Materials Science and Engineering, MIT - Massachusetts Institute of Technology, 2Department of Mechanical Engineering, MIT - Massachusetts Institute of Technology, 3HST Center for Biomedical Engineering and Harvard Stem Cell Institute, Brigham and Women's Hospital and Harvard Medical School

We describe a protocol to observe and analyze cell rolling trajectories on asymmetric receptor-patterned substrates. The resulting data are useful for engineering of receptor-patterned substrates for label-free cell separation and analysis.

image

Bioengineering

Systematic Analysis of In Vitro Cell Rolling Using a Multi-well Plate Microfluidic System
Oren Levy 1,2,3,4,5, Priya Anandakumaran 1,2,3,4,5, Jessica Ngai 1,2,3,4,5, Rohit Karnik 6, Jeffrey M. Karp 1,2,3,4,5
1Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, 2Center for Regenerative Therapeutics, Brigham and Women's Hospital, 3Harvard Medical School, Harvard University, 4Harvard Stem Cell Institute, Harvard University, 5Harvard-MIT Division of Health Sciences and Technology, 6Department of Mechanical Engineering, Massachusetts Institute of Technology

This study used a multi-well plate microfluidic system, significantly increasing throughput of cell rolling studies under physiologically relevant shear flow. Given the importance of cell rolling in the multi-step cell homing cascade and the importance of cell homing following systemic delivery of exogenous populations of cells in patients, this system offers potential as a screening platform to improve cell-based therapy.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved