Many microfluidic devices have been developed for use in the study of electrotaxis. Yet, none of these chips allows the efficient study of the simultaneous chemical and electric-field (EF) effects on cells. We developed a polymethylmethacrylate-based device that offers better-controlled coexisting EF and chemical stimulation for use in electrotaxis research.
Micro-fabricated devices integrated with fluidic components provide an in vitro platform for cell studies mimicking the in vivo micro-environment. We developed polymethylmethacrylate-based microfluidic chips for studying cellular responses under single or coexisting chemical/electrical/shear stress stimuli.
The control of chemical and oxygen gradients is essential for cell cultures. This paper reports a polydimethylsiloxane-polycarbonate (PDMS-PC) microfluidic device capable of reliably generating combinations of chemical and oxygen gradients for cell migration studies, which can be practically utilized in biological labs without sophisticated instrumentation.
We ectopically expressed NR1 subunit of NMDA receptor tagged with green fluorescent protein in human embryonic cells (HEK293) as antigen to detect autoantibodies against NMDA receptor in the blood of patients suspected with autoimmune encephalitis. This simple method may be suitable for screening purposes in clinical settings.
We present a protocol to investigate the mRNA expression biomarkers of periosteum-derived cells (PDCs) induced by vitamin C (vitamin C) and 1,25-dihydroxy vitamin D [1,25-(OH)2D3]. In addition, we evaluate the ability of PDCs to differentiate into osteocytes, chondrocytes, and adipocytes.
Dorsal root ganglia (DRG) primary cultures are frequently used to study physiological functions or pathology-related events in sensory neurons. Here, we demonstrate the use of lumbar DRG cultures to detect the release of neurotransmitters after neuropeptide FF receptor type 2 stimulation with a selective agonist.
Several methods are available for the fabrication of channels of non-rectangular sections embedded in polydimethylsiloxane microfluidic devices. Most of them involve multistep manufacturing and extensive alignment. In this paper, a one-step approach is reported for fabricating microfluidic channels of different geometric cross sections by polydimethylsiloxane sequential wet etching.
Here, we present a protocol for creating an immunocompetent ICR (Institute of Cancer Research) murine model of central nervous system infection to display the development of neuropathy. Monitoring acute viral encephalitic disorders by identical disease scores could be performed for showing dengue virus-induced neuropathy in vivo.
This protocol integrated near-infrared spectroscopy into conventional cardiopulmonary exercise testing to identify the involvement of the cerebral hemodynamic response in exercise intolerance in patients with heart failure.
Presented here is a multiphoton microscopic platform for live mouse ocular surface imaging. Fluorescent transgenic mouse enables the visualization of cell nuclei, cell membranes, nerve fibers and capillaries within the ocular surface. Non-linear second harmonic generation signals derived from collagenous structures provide label-free imaging for stromal architectures.
This study reports the development of a novel robot-assisted task-oriented program for hand rehabilitation. The developmental process consists of experiments using both healthy subjects and subjects who have had a stroke and suffered from subsequent motor control dysfunction.
Presented here is a protocol to discover the overexpressed driver genes maintaining the established cancer stem-like cells derived from colorectal HT29 cells. RNAseq with available bioinformatics was performed to investigate and screen gene expression networks for elucidating a potential mechanism involved in the survival of targeted tumor cells.
In this study, we present a protocol for the differentiation of neural stem and progenitor cells (NPCs) solely induced by direct current (DC) pulse stimulation in a microfluidic system.
Presented here is a novel technique of C-arm free transtubular posterolateral decompression for lumbar foraminal stenosis and lateral disc herniation under O-arm navigation.
This article describes a protocol to simplify the process and render the preparation of autologous conditioned serum (ACS) less expensive. No special syringes or surface-coated glass beads are needed. Moreover, the modified ACS (mACS) has competitive advantages over conventional autologous serum in the corneal wound healing of murine eyes ex vivo.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved