Sign In

Sanford-Burnham Medical Research Institute

5 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

Efficient Derivation of Human Neuronal Progenitors and Neurons from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Xuejun H. Parsons 1,2, Yang D. Teng 3,4, James F. Parsons 1,2, Evan Y. Snyder 1,2,5, David B. Smotrich 1,2,6, Dennis A. Moore 1,2
1San Diego Regenerative Medicine Institute, 2Xcelthera, 3Department of Neurosurgery, Harvard Medical School, 4Division of SCI Research, VA Boston Healthcare System, 5Program in Stem Cell & Regenerative Biology, Sanford-Burnham Medical Research Institute, 6La Jolla IVF

We have established a protocol for induction of neuroblasts direct from pluripotent human embryonic stem cells maintained under defined conditions with small molecules, which enables derivation of a large supply of human neuronal progenitors and neuronal cell types in the developing CNS for neural repair.

image

Biology

Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Xuejun H. Parsons 1,2, Yang D. Teng 3,4, James F. Parsons 1,2, Evan Y. Snyder 1,2,5, David B. Smotrich 1,2,6, Dennis A. Moore 1,2
1San Diego Regenerative Medicine Institute, 2Xcelthera, 3Department of Neurosurgery, Harvard Medical School, 4Division of SCI Research, VA Boston Healthcare System, 5Program in Stem Cell & Regenerative Biology, Sanford-Burnham Medical Research Institute, 6La Jolla IVF

We have established a protocol for induction of cardioblasts direct from pluripotent human embryonic stem cells maintained under defined conditions with small molecules, which enables derivation of a large supply of human cardiac progenitors and functional cardiomyocytes for cardiovascular repair.

image

Medicine

Sampling Human Indigenous Saliva Peptidome Using a Lollipop-Like Ultrafiltration Probe: Simplify and Enhance Peptide Detection for Clinical Mass Spectrometry
Wenhong Zhu 1, Richard L. Gallo 2,3, Chun-Ming Huang 2,3,4
1Sanford-Burnham Medical Research Institute, 2Division of Dermatology, University of California, San Diego , 3VA San Diego Healthcare Center, 4Moores Cancer Center, University of California, San Diego

Considering saliva sampling for future clinical application, a lollipop-like ultrafiltration (LLUF) probe was fabricated to fit in the human oral cavity. Direct analysis of undigested saliva by NanoLC-LTQ mass spectrometry demonstrated the ability of LLUF probes to remove large proteins and high abundance proteins, and make low-abundant peptides more detectable.

image

Developmental Biology

Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids
Viviana Meraviglia *1, Alessandra Zanon *1, Alexandros A. Lavdas 1, Christine Schwienbacher 1, Rosamaria Silipigni 2, Marina Di Segni 2, Huei-Sheng Vincent Chen 3, Peter P. Pramstaller 1, Andrew A. Hicks 1, Alessandra Rossini 1
1Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 2Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico, 3Del E. Webb Center for Neuroscience, Aging & Stem Cell Research, Sanford-Burnham Medical Research Institute

Induced pluripotent stem cells (iPSCs) represent a source of patient-specific tissues for clinical applications and basic research. Here, we present a detailed protocol to reprogram human peripheral blood mononuclear cells (PBMNCs) obtained from frozen buffy coats into viral-free iPSCs using non-integrating episomal plasmids.

image

Developmental Biology

Generation of 3D Whole Lung Organoids from Induced Pluripotent Stem Cells for Modeling Lung Developmental Biology and Disease
Sandra L. Leibel 1,2,3, Rachael N. McVicar 2,3, Alicia M. Winquist 2,3, Evan Y. Snyder 1,2,3
1Department of Pediatrics, University of California, San Diego School of Medicine, 2Sanford Consortium for Regenerative Medicine, 3Sanford Burnham Prebys Medical Discovery Institute

The article describes step wise directed differentiation of induced pluripotent stem cells to three-dimensional whole lung organoids containing both proximal and distal epithelial lung cells along with mesenchyme.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved