A technique to collect and measure surgical wound biochemical mediators at specific time points.
A technique is presented for the in-vivo collection of interstitial fluid samples from pertinent tissue sites (here, experimentally inflamed skin) for the measurement of biochemicals mediating pain and inflammation.
Algorithms assessing heat and mechanical pain thresholds in experimentally inflamed skin of human study subjects are shown. The two pain testing paradigms independently examine nociceptive processing by the two major peripheral nerve fiber populations transmitting pain, i.e., non-myelinated C fibers and small myelinated A-delta fibers.
Diffuse noxious inhibitory control, temporal summation and wound hyperalgesia testing are demonstrated in the obstetric patient. These tests evaluate inhibitory and excitatory mechanisms of pain processing and are here utilized to evaluate endogenous analgesia at different time-points during pregnancy and the peripartum period to help reveal individual s risk for persistent pain.
This video shows a model to study the development of intimal hyperplasia after stent deployment using a human vessel (IMA) in an immunodeficient rat model.
Tissue-specific analysis of a hair follicle regeneration model using lentivirus to mediate gain- or loss-of-function.
Probe-based confocal laser endomicroscopy enables real-time microscopy of the human urinary tract during cystoscopy, providing dynamic, intravital imaging of pathological states such as bladder cancer with cellular resolution. Endomicroscopy may augment the diagnostic accuracy of standard white light endoscopy and provide intraoperative image guidance to improve surgical resection.
This article provides a detailed and visual description of a methodology for collecting and measuring biochemical inflammatory and nociceptive mediators at the surgical wound site following cesarean delivery. This human bioassay has been used to determine correlations between wound and serum cytokine concentrations and drug-mediated changes in wound cytokines, chemokines and neuropetides.
This video shows two models of intimal plaque development in murine arteries and emphasizes the differences in myointimal hyperplasia and atherosclerosis.
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved