We describe the combination of focal UV-induced photo-activation of neuro-active compounds with whole-cell patch-clamp and multi-photon imaging of intracellular sodium transients in dendrites and spines of hippocampal neurons in acute tissue slices of the mouse brain.
We demonstrate the fabrication, calibration and properties of two types of ion-selective microelectrodes (double-barreled and concentric) for measurement of ion concentrations in brain tissue. These are then used in the mouse hippocampal slice preparation to show that excitatory activity changes both extracellular potassium and sodium concentrations.
The incidence of obesity is rising and increases the risk of chronic lung diseases. To establish the underlying mechanisms and preventive strategies, well-defined animal models are needed. Here, we provide three methods (glucose-tolerance-test, body plethysmography, and lung fixation) to study the effect of obesity on pulmonary outcomes in mice.
We describe the use of optogenetics and electrophysiological recordings for selective manipulations of hippocampal theta oscillations (5-10 Hz) in behaving mice. The efficacy of the rhythm entrainment is monitored using local field potential. A combination of opto- and pharmacogenetic inhibition addresses the efferent readout of hippocampal synchronization.
Here, we present a protocol for the modulation of the intracardiac autonomic nervous system and the assessment of its influence on basic electrophysiology, arrhythmogenesis, and cAMP dynamics using an ex vivo Langendorff setup.
We describe a protocol for cell-type specific expression of the genetically encoded FRET-based sensor ATeam1.03YEMK in organotypic slice cultures of the mouse forebrain. Furthermore, we show how to use this sensor for dynamic imaging of cellular ATP levels in neurons and astrocytes.
Pathophysiological changes in the cardiac autonomic nervous system, especially in its sympathetic branch, contribute to the onset and maintenance of ventricular arrhythmias. In the present protocol, we show how to characterize murine stellate ganglia to improve the understanding of the underlying molecular and cellular processes.
We describe a detailed protocol for the generation of human induced pluripotent stem cell-derived brain organoids and their use in modeling mitochondrial diseases.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved