Sign In

DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance

3 ARTICLES PUBLISHED IN JoVE

image

Medicine

Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training
Maximilian Grab 1,2, Carina Hopfner 3, Alena Gesenhues 4, Fabian König 1,2, Nikolaus A. Haas 3, Christian Hagl 1, Adrian Curta 4, Nikolaus Thierfelder 1
1Department of Cardiac Surgery, Ludwig Maximilian University Munich, 2Chair of Medical Materials and Implants, Technical University of Munich, 3Department Pediatric Cardiology and Pediatric Intensive Care, Ludwig Maximilian University Munich, 4Department of Radiology, Ludwig Maximilian University Munich

Here we present development of a mock circulation setup for multimodal therapy evaluation, pre-interventional planning, and physician-training on cardiovascular anatomies. With the application of patient-specific tomographic scans, this setup is ideal for therapeutic approaches, training, and education in individualized medicine.

image

Medicine

Combining 3D-Printing and Electrospinning to Manufacture Biomimetic Heart Valve Leaflets
Benedikt Freystetter 1, Maximilian Grab 1,2, Linda Grefen 1, Lara Bischof 1, Lorenz Isert 3, Petra Mela 2, Deon Bezuidenhout 4, Christian Hagl 1,5, Nikolaus Thierfelder 1
1Department of Cardiac Surgery, Ludwig Maximilians University Munich, 2Chair of Medical Materials and Implants, Technical University Munich, 3Faculty for Chemistry and Pharmacy, Ludwig Maximilians University Munich, 4Cardiovascular Research Unit, University of Cape Town, 5DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance

The presented method offers an innovative way for engineering biomimetic fiber structures in three-dimensional (3D) scaffolds (e.g., heart valve leaflets). 3D-printed, conductive geometries were used to determine shape and dimensions. Fiber orientation and characteristics were individually adjustable for each layer. Multiple samples could be manufactured in one setup.

image

Biology

An In Vitro Assay to Study Platelet Migration Using RGD-Functionalized Avidin-Biotin Tethers
Shuxia Fan 1,2, Ben Raude 1,2,3, Florian Gaertner 1,2,4,5
1Department of Medicine I, University Hospital, LMU Munich, 2Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, 3Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 4Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer, Ludwig-Maximilians-University Munich, 5DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance

A detailed protocol for imaging single migrating platelets using RGD-functionalized avidin-biotin tethers with tunable density is provided, revealing that platelets generate enough force to rupture the avidin-biotin bond.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved