Transcranial direct current stimulation (tDCS) is a therapeutic technique proposed to treat psychiatric diseases. An animal model is essential for understanding the specific biological alterations evoked by tDCS. This protocol describes a tDCS mouse model that uses a chronically implanted electrode.
Here, an integrated protocol based on optical tweezers and defocusing microscopy is described to measure the rheological properties of cells. This protocol has wide applicability in studying the viscoelastic properties of erythrocytes under variable physio-pathological conditions.
Here we describe a new method to help elucidate the mechanisms of cellular immunity to Plasmodium during the blood stage of infection. This is an in vitro assay that measures infected red blood cell killing by cytotoxic lymphocytes.
Here, we present a protocol for studying orthodontic tooth movement (OTM), serving as a suitable model for investigating the mechanisms of bone adaptation, root resorption, and the response of bone cells to mechanical stimuli. This comprehensive guide provides detailed information on the OTM model, micro-computed tomography acquisition, and subsequent analysis.