The objective of the described protocol is twofold: to configure a network functions virtualization environment using unmanned aerial vehicles as computational entities providing the underlying structure to execute virtualized network functions and to use this environment to support the automated deployment of a functional internet protocol telephony service over the aerial vehicles.
Presented here is a method to design an augmented reality smartphone application for the visualization of anatomical three-dimensional models of patients using a 3D-printed reference marker.
The objective of the described protocol is to support the flexible incorporation of 5G experimentation infrastructures into a multi-site NFV ecosystem, through a VPN-based overlay network architecture. Moreover, the protocol defines how to validate the effectiveness of the integration, including a multi-site vertical service deployment with NFV-capable small aerial vehicles.
We describe a preclinical experimental method to evaluate metabolic neuromodulation induced by acute deep brain stimulation with in vivo FDG-PET. This manuscript includes all experimental steps, from stereotaxic surgery to the application of the stimulation treatment and the acquisition, processing, and analysis of PET images.