We describe the preparation of three test samples and how they can be used to optimize and assess the performance of STORM microscopes. Using these examples we show how to acquire raw data and then process it to acquire super-resolution images in cells of approximately 30-50 nm resolution.
A comprehensive methodology is described for overcoming experimental obstacles encountered when using tip-enhanced Raman spectroscopy (TERS) to map the properties of graphene surfaces. Critical steps, such as the optical alignment of the system, the preparation of TERS probes and the operational TERS procedure required to obtain consistent results, are outlined.
A streamlined approach to screening for the expression of recombinant membrane proteins in Escherichia coli based on fusion to green fluorescent protein is presented.
Here, we present a step-wise protocol for the dispersion of nanomaterials in aqueous media with real-time characterization to identify the optimal sonication conditions, intensity, and duration for improved stability and uniformity of nanoparticle dispersions without impacting the sample integrity.
The presented protocol describes a straightforward approach for screening protein crystallization conditions and crystal growth using a 96-well high-throughput dialysis plate. The use of dialyzer tubes for the large-scale growth of microcrystals is also demonstrated for serial crystallography and MicroED applications.
This protocol describes the fabrication of a stable, biologically relevant phantom material for optical and acoustic biomedical imaging applications, featuring independently tunable acoustic and optical properties.