We demonstrate a dark-field microscopy method based on Gabor-like filtering to measure subcellular dynamics within single living cells. The technique is sensitive to alterations in the structure of organelles, such as mitochondrial fragmentation.
A push-pull method for collecting plant volatiles is described. The method allows for a comparison of volatiles induced by herbivore feeding, exogenous methyl jasmonate, and mechanical damage. This technique is also used to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants.
The overall goal of this video is to show how to perform targeted retinal injection and in ovo electroporation of DNA/RNA constructs into the chick embryonic retina at the Hamburger and Hamilton stage 22-23, which is about embryonic day 4 (E4). This technique is very useful to study gene expression, gene regulation, and morphological change in developing chick retina.
Intravital microscopy is a powerful tool that enables imaging various biological processes in live animals. In this article, we present a detailed method for imaging the dynamics of subcellular structures, such as the secretory granules, in the salivary glands of live mice.