We present a parametric driving method to cool an ultracold Fermi gas in a crossed-beam optical dipole trap. This method selectively removes high-energy atoms from the trap by periodically modulating the trap depth with frequencies that are resonant with the anharmonic components of the trapping potential.
Understanding the biological composition of environmental particulate matter is important for the study of its significant impacts on human health and disease spread. Here, we used three types of bioaerosol sampling methods and a biological analysis of airborne microbes to better explore airborne microbial communities under different environmental conditions.