We have shown that a microelectrode implantation in the motor cortex of rats causes immediate and lasting motor deficits. The methods proposed herein outline a microelectrode implantation surgery and three rodent behavioral tasks to elucidate potential changes in the fine or gross motor function due to implantation-caused damage to the motor cortex.
We have shown that the etching of nano-architecture into intracortical microelectrode devices may reduce the inflammatory response and has the potential to improve electrophysiological recordings. The methods described herein outline an approach to etch nano-architectures into the surface of non-functional and functional single shank silicon intracortical microelectrodes.