Accedi

Trihybrid Crosses

Some of Mendel’s crosses examined three pairs of contrasting characteristics. Such a cross is called a trihybrid cross. A trihybrid cross is a combination of three individual monohybrid crosses. For example, plant height (tall vs. short), seed shape (round vs. wrinkled), and seed color (yellow vs. green).

The F1 generation plants of a trihybrid cross are heterozygous for all three traits and produce eight gametes. Upon self-fertilization, these gametes have an equal chance to give rise to 64 different combinations of genotypes in the F2 generation. In cases like this, when there are more than two pairs of contrasting characteristics to be studied, a Punnett square is unwieldy and impractical. The forked line method can be used instead of a Punnett square to simplify predicting genotype and phenotype ratios.

While it is impossible to predict the actual number of individuals per genotype in the F2 generation, this method can predict the phenotypic ratio, 27:9:9:9:3:3:3:1. In a cross involving tall plants with round, yellow seed and dwarf plants with wrinkled, green seeds, one can expect to find 27 tall plants with round and yellow seeds, 9 short plants with yellow, round seeds, 9 tall plants with yellow, wrinkled seeds, 9 tall plants with green, round seeds, 3 short plants with yellow, wrinkled seeds, 3 short plants with green, round seeds, 3 tall plants with green, wrinkled seeds, and 1 short plant with green, wrinkled seeds.

Rules of Multi Hybrid Fertilization

There are rules to identify the gametes and genotypes of the offspring of the F1 and F2 generations, respectively. These rules apply to all the multi-hybrid crosses that obey the law of independent assortment and follow the dominant-recessive pattern. The number of gametes formed in F1 generation can be identified by using the 2n formula, where n is the number of heterozygous gene pairs. For example, breeding between XxYy and XxYy heterozygotes has n of 2. Thus, the number of gametes formed by the F1 heterozygotes will be 22, which is four.

Similarly, breeding between XXYy and XXyY heterozygotes has n of 1 because X is not heterozygous. Hence, the number of gametes formed by the F1 heterozygotes will be 21, which is 2. Similarly, the genotype of the F2 generation can be identified using the 3n formula.

Tags
Trihybrid CrossesMendel s CrossesMonohybrid CrossesPlant HeightSeed ShapeSeed ColorF1 GenerationGametesGenotypesF2 GenerationPunnett SquareForked Line MethodPredicting Genotype And Phenotype RatiosPhenotypic Ratio

Dal capitolo 12:

article

Now Playing

12.4 : Trihybrid Crosses

Genetica mendeliana

22.5K Visualizzazioni

article

12.1 : Quadrati di Punnet

Genetica mendeliana

11.6K Visualizzazioni

article

12.2 : Incroci monoibridi

Genetica mendeliana

7.4K Visualizzazioni

article

12.3 : Incroci diibridi

Genetica mendeliana

5.2K Visualizzazioni

article

12.5 : Legge dell'assortimento indipendente

Genetica mendeliana

5.2K Visualizzazioni

article

12.6 : Test del Chi-quadrato

Genetica mendeliana

33.0K Visualizzazioni

article

12.7 : Analisi del pedigree

Genetica mendeliana

12.0K Visualizzazioni

article

12.8 : Tratti allelici multipli

Genetica mendeliana

8.3K Visualizzazioni

article

12.9 : Dominanza incompleta

Genetica mendeliana

18.7K Visualizzazioni

article

12.10 : Alleli letali

Genetica mendeliana

11.6K Visualizzazioni

article

12.11 : Tratti poligenici

Genetica mendeliana

4.1K Visualizzazioni

article

12.12 : Circostanze e ambiente influenzano il fenotipo

Genetica mendeliana

6.4K Visualizzazioni

article

12.13 : Cromosomi X e Y

Genetica mendeliana

17.6K Visualizzazioni

article

12.14 : Il cromosoma Y determina il sesso maschile

Genetica mendeliana

6.3K Visualizzazioni

article

12.15 : Il rapporto tra il cromosoma X e gli autosomi

Genetica mendeliana

8.3K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati