Accedi

A substance that reaches superconductivity, a state in which magnetic fields cannot penetrate, and there is no electrical resistance, is referred to as a superconductor. In 1911, Heike Kamerlingh Onnes of Leiden University, a Dutch physicist, observed a relation between the temperature and the resistance of the element mercury. The mercury sample was then cooled in liquid helium to study the linear dependence of resistance on temperature. It was observed that, as the temperature decreased, the resistance dropped. Kamerlingh Onnes continued to cool the mercury sample further, and as the temperature approached 4.2 K, the resistance abruptly went to zero. This is the critical temperature for mercury, where the mercury sample enters into a phase with absolute zero resistance, and this phenomenon is known as superconductivity. In the case of conductors, the resistance is not equal to zero but is less than 0.01 Ω. There are various methods to measure very small resistances, such as the four-point method, but an ohmmeter is not acceptable for testing superconductivity resistance.

Several other materials have been discovered in the superconducting phase when the temperature reaches near absolute zero. In 1941, an alloy of niobium-nitride was found to become superconducting at 16 kelvin; similarly, in 1953, vanadium-silicon was found to become superconductive at 17.5 kelvin. The temperatures for the transition into superconductivity were slowly creeping higher. Surprisingly, many good conductors, like copper, silver, and gold, do not exhibit superconductivity.

Tags

SuperconductorSuperconductivityHeike Kamerlingh OnnesMercuryCritical TemperatureElectrical ResistanceLiquid HeliumPhase TransitionNiobium nitrideVanadium siliconAbsolute ZeroFour point MethodConductivity

Dal capitolo 30:

article

Now Playing

30.20 : Superconductor

Electromagnetic Induction

1.0K Visualizzazioni

article

30.1 : Induzione

Electromagnetic Induction

3.8K Visualizzazioni

article

30.2 : Legge di Faraday

Electromagnetic Induction

3.7K Visualizzazioni

article

30.3 : Legge di Lenz

Electromagnetic Induction

3.4K Visualizzazioni

article

30.4 : Campi elettromagnetici motori

Electromagnetic Induction

3.0K Visualizzazioni

article

30.5 : Dinamo a disco di Faraday

Electromagnetic Induction

1.9K Visualizzazioni

article

30.6 : Campi elettrici indotti

Electromagnetic Induction

3.4K Visualizzazioni

article

30.7 : Campi Elettrici Indotti: Applicazioni

Electromagnetic Induction

1.4K Visualizzazioni

article

30.8 : Correnti parassite

Electromagnetic Induction

1.4K Visualizzazioni

article

30.9 : Corrente di spostamento

Electromagnetic Induction

2.7K Visualizzazioni

article

30.10 : Significato della corrente di spostamento

Electromagnetic Induction

4.2K Visualizzazioni

article

30.11 : Campi elettromagnetici

Electromagnetic Induction

2.1K Visualizzazioni

article

30.12 : Equazione dell'elettromagnetismo di Maxwell

Electromagnetic Induction

2.9K Visualizzazioni

article

30.13 : Simmetria nelle equazioni di Maxwell

Electromagnetic Induction

3.2K Visualizzazioni

article

30.14 : Legge di Ampere-Maxwell: Risoluzione dei problemi

Electromagnetic Induction

445 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati