Accedi

A device that transforms voltages from one value to another using induction is called a transformer. A transformer consists of two separate coils, or windings, wrapped around the same soft iron core. However, they are electrically insulated from each other.

The iron core has a substantial relative permeability. Therefore, the magnetic field lines generated due to the current in one winding are almost entirely confined within the core, such that the same magnetic flux permeates each turn of both the primary and the secondary windings, maximizing the mutual inductance of the two windings.

The primary winding has NP loops, or turns, and is connected to an alternating voltage source. The secondary winding has NS turns and is connected to a load resistor. In an ideal transformer, the alternating voltage applied to the primary winding generates magnetic flux, which induces an emf in the secondary winding. Therefore, the output voltage delivered to the load resistor must equal the emf induced across the secondary winding. Consequently, the ratio of the secondary emf to the primary emf equals the ratio of secondary to primary turns. If the windings have zero resistance, the induced emfs are equal to the terminal voltages across the primary and the secondary windings, respectively, and are given by:

Equation1

This equation is often abbreviated as the transformer equation. In an ideal case, energy losses to magnetic hysteresis, ohmic heating in the windings, and ohmic heating of the induced eddy currents in the core are also ignored.

The induced emf in the secondary winding gives rise to an alternating current that delivers energy to the device to which it is connected. All currents and emfs have the same frequency as the ac source.

Tags
TransformerVoltage TransformationInductionCoilsWindingsMagnetic FieldMutual InductancePrimary WindingSecondary WindingAlternating VoltageEmfLoad ResistorTransformer EquationEnergy LossesMagnetic HysteresisOhmic HeatingInduced Currents

Dal capitolo 32:

article

Now Playing

32.11 : Transformers

Alternating-Current Circuits

1.0K Visualizzazioni

article

32.1 : Fonti CA

Alternating-Current Circuits

2.8K Visualizzazioni

article

32.2 : Valore RMS nel circuito CA

Alternating-Current Circuits

1.5K Visualizzazioni

article

32.3 : Resistore in un circuito CA

Alternating-Current Circuits

2.4K Visualizzazioni

article

32.4 : Condensatore in un circuito CA

Alternating-Current Circuits

2.4K Visualizzazioni

article

32.5 : Induttore in un circuito CA

Alternating-Current Circuits

2.2K Visualizzazioni

article

32.6 : Circuiti serie RLC: Introduzione

Alternating-Current Circuits

2.1K Visualizzazioni

article

32.7 : Circuiti serie RLC: impedenza

Alternating-Current Circuits

2.0K Visualizzazioni

article

32.8 : Circuito serie RLC: risoluzione dei problemi

Alternating-Current Circuits

1.8K Visualizzazioni

article

32.9 : Alimentazione in un circuito CA

Alternating-Current Circuits

1.9K Visualizzazioni

article

32.10 : Risonanza in un circuito CA

Alternating-Current Circuits

1.9K Visualizzazioni

article

32.12 : Tipi di trasformatori

Alternating-Current Circuits

909 Visualizzazioni

article

32.13 : Perdite di energia nei trasformatori

Alternating-Current Circuits

789 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati