Accedi

The outcome of any hypothesis testing leads to rejecting or not rejecting the null hypothesis. This decision is taken based on the analysis of the data, an appropriate test statistic, an appropriate confidence level, the critical values, and P-values. However, when the evidence suggests that the null hypothesis cannot be rejected, is it right to say, 'Accept' the null hypothesis?

There are two ways to indicate that the null hypothesis is not rejected. 'Accept' the null hypothesis and 'fail to reject' the null hypothesis. Superficially, both these phrases mean the same, but in statistics, the meanings are somewhat different. The phrase 'accept the null hypothesis' implies that the null hypothesis is by nature true, and it is proved. But a hypothesis test simply provides information that there is no sufficient evidence in support of the alternative hypothesis, and therefore the null hypothesis cannot be rejected. The null hypothesis cannot be proven, although the hypothesis test begins with an assumption that the hypothesis is true, and the final result indicates the failure of the rejection of the null hypothesis. Thus, it is always advisable to state 'fail to reject the null hypothesis' instead of 'accept the null hypothesis.'

'Accepting' a hypothesis may also imply that the given hypothesis is now proven, so there is no need to study it further. Nevertheless, that is never the case, as newer scientific evidence often challenges the existing studies. Discovery of viruses and fossils, rediscovery of presumed extinct species, criminal trials, and novel drug tests follow the same principles of testing hypotheses. In those cases, 'accepting' a hypothesis may lead to severe consequences.

Tags
Hypothesis TestingNull HypothesisRejectFail To RejectConfidence LevelP valuesTest StatisticStatistical AnalysisEvidenceAlternative HypothesisAcceptanceImplicationsScientific EvidenceStatistical Principles

Dal capitolo 9:

article

Now Playing

9.8 : Hypothesis: Accept or Fail to Reject?

Hypothesis Testing

26.9K Visualizzazioni

article

9.1 : Che cos'è un'ipotesi?

Hypothesis Testing

9.1K Visualizzazioni

article

9.2 : Ipotesi nulle e alternative

Hypothesis Testing

7.5K Visualizzazioni

article

9.3 : Regione critica, valori critici e livello di significatività

Hypothesis Testing

11.4K Visualizzazioni

article

9.4 : Valore P

Hypothesis Testing

6.4K Visualizzazioni

article

9.5 : Tipi di verifica delle ipotesi

Hypothesis Testing

24.9K Visualizzazioni

article

9.6 : Processo decisionale: metodo del valore P

Hypothesis Testing

5.0K Visualizzazioni

article

9.7 : Processo decisionale: metodo tradizionale

Hypothesis Testing

3.8K Visualizzazioni

article

9.9 : Errori nei test di ipotesi

Hypothesis Testing

3.9K Visualizzazioni

article

9.10 : Testare un'affermazione sulla proporzione della popolazione

Hypothesis Testing

3.2K Visualizzazioni

article

9.11 : Verifica di un'affermazione sulla media: popolazione nota SD

Hypothesis Testing

2.6K Visualizzazioni

article

9.12 : Verifica di un'affermazione sulla media: popolazione sconosciuta SD

Hypothesis Testing

3.3K Visualizzazioni

article

9.13 : Verifica di un'affermazione sulla deviazione standard

Hypothesis Testing

2.4K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati