Accedi

Directly acting muscle relaxants like dantrolene and botulinum toxin (BoNT) have distinct mechanisms and applications. Dantrolene, a hydantoin derivative, acts on the ryanodine receptor (RYR1) in skeletal muscle cells. RYR1 are calcium channels present at the sarcoplasmic reticulum membrane. In response to excitation, they release calcium ions from the sarcoplasmic reticulum to the cytosol. Calcium promotes actin-myosin-mediated contraction of muscles.

The binding of dantrolene to the RYR1 inhibits the opening of the channel and blocks the release of calcium. However, dantrolene does not affect RYR2 receptors in cardiac or smooth muscle, so these organs remain minimally affected.

Dantrolene also treats malignant hyperthermia, a life-threatening heritable condition often triggered by general anesthetics or neuromuscular blockers. In some cases, individuals cannot sequester excess calcium via calcium transporters, while other affected patients have altered calcium-induced calcium release. A small calcium influx triggers a more significant calcium release from intracellular stores. The calcium release persists, muscle contraction continues, generating lactic acid and increasing the body temperature. Prompt treatment of patients with dantrolene helps reduce lactic acidosis and body temperature by inhibiting calcium release.

BoNT is a neurotoxin that acts on the presynaptic neuron's vesicle fusion proteins and inhibits acetylcholine release at the neuromuscular junction. They temporarily impede the function of specific muscles or nerves, interfering with neurotransmission, which helps paralyze muscles and relieve pain. BoNT has two subunits, a heavy chain of 100 kDa and a light chain of 50 kDa. The light chain is the active part of the neurotoxin. It proteolytically cleaves vesicle fusion proteins like SNAP-25 and synaptobrevin-2 and inhibits the exocytosis of acetylcholine-filled vesicles. BoNT is helpful in the treatment of cerebral palsy, multiple sclerosis, or cervical dystonia.

Tags

Directly Acting Muscle RelaxantsDantroleneBotulinum ToxinBoNTRyanodine ReceptorRYR1Calcium ChannelsMalignant HyperthermiaNeuromuscular JunctionAcetylcholine ReleaseNeurotransmissionMuscle ParalysisCerebral PalsyMultiple SclerosisCervical Dystonia

Dal capitolo 7:

article

Now Playing

7.8 : Directly Acting Muscle Relaxants: Dantrolene and Botulinum Toxin

Skeletal Muscle Relaxants

600 Visualizzazioni

article

7.1 : Giunzione Neuromuscolare E Blocco

Skeletal Muscle Relaxants

2.7K Visualizzazioni

article

7.2 : Classificazione dei miorilassanti scheletrici

Skeletal Muscle Relaxants

2.3K Visualizzazioni

article

7.3 : Bloccanti neuromuscolari non depolarizzanti (competitivi): meccanismo d'azione

Skeletal Muscle Relaxants

1.2K Visualizzazioni

article

7.4 : Bloccanti neuromuscolari non depolarizzanti (competitivi): azioni farmacologiche

Skeletal Muscle Relaxants

346 Visualizzazioni

article

7.5 : Bloccanti neuromuscolari non depolarizzanti (competitivi): farmacocinetica

Skeletal Muscle Relaxants

408 Visualizzazioni

article

7.6 : Bloccanti depolarizzanti: meccanismo d'azione

Skeletal Muscle Relaxants

1.0K Visualizzazioni

article

7.7 : Bloccanti depolarizzanti: Farmacocinetica

Skeletal Muscle Relaxants

280 Visualizzazioni

article

7.9 : Miorilassanti scheletrici: effetti avversi

Skeletal Muscle Relaxants

307 Visualizzazioni

article

7.10 : Miorilassanti scheletrici: usi terapeutici

Skeletal Muscle Relaxants

432 Visualizzazioni

article

7.11 : Agenti spasmolitici: classificazione chimica

Skeletal Muscle Relaxants

828 Visualizzazioni

article

7.12 : Miorilassanti ad azione periferica e centrale: un confronto

Skeletal Muscle Relaxants

3.0K Visualizzazioni

article

7.13 : Miorilassanti ad azione centrale: usi terapeutici

Skeletal Muscle Relaxants

562 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati