Random or indeterminate errors originate from various uncontrollable variables, such as variations in environmental conditions, instrument imperfections, or the inherent variability of the phenomena being measured. Usually, these errors cannot be predicted, estimated, or characterized because their direction and magnitude often vary in magnitude and direction even during consecutive measurements. As a result, they are difficult to eliminate. However, the aggregate effect of these errors can be approximately characterized by enumerating the frequencies of observations in a large dataset. Characterizing the collective effect of these errors helps with statistical analyses. Take a large data set of temperature measurements in London, for instance. We can plot the magnitude of temperature vs. the frequency of occurrence, and if the variations (or errors) in the temperature are truly random, we will obtain a normal distribution curve, also known as the Gaussian curve. This curve allows us to apply the mathematical laws of probability to estimate the mean value and the deviation from the mean value, also known as the standard deviation. From there, we can perform tests to eliminate outliers and answer questions about the dataset.

Tags
Random ErrorIndeterminate ErrorsEnvironmental ConditionsInstrument ImperfectionsMeasurement VariabilityStatistical AnalysesTemperature MeasurementsNormal Distribution CurveGaussian CurveProbability LawsMean ValueStandard DeviationOutliers

Dal capitolo 1:

article

Now Playing

1.6 : Random Error

Chemical Applications of Statistical Analyses

516 Visualizzazioni

article

1.1 : Unità SI: ridefinizione 2019

Chemical Applications of Statistical Analyses

856 Visualizzazioni

article

1.2 : Gradi di libertà

Chemical Applications of Statistical Analyses

2.7K Visualizzazioni

article

1.3 : Analisi statistica: panoramica

Chemical Applications of Statistical Analyses

3.6K Visualizzazioni

article

1.4 : Tipi di errori: rilevamento e minimizzazione

Chemical Applications of Statistical Analyses

953 Visualizzazioni

article

1.5 : Errore sistematico: errori metodologici e di campionamento

Chemical Applications of Statistical Analyses

977 Visualizzazioni

article

1.7 : Deviazione standard dei risultati calcolati

Chemical Applications of Statistical Analyses

3.3K Visualizzazioni

article

1.8 : Introduzione agli z Scores

Chemical Applications of Statistical Analyses

218 Visualizzazioni

article

1.9 : Incertezza: Panoramica

Chemical Applications of Statistical Analyses

225 Visualizzazioni

article

1.10 : Propagazione dell'incertezza da errore casuale

Chemical Applications of Statistical Analyses

325 Visualizzazioni

article

1.11 : Propagazione dell'incertezza da errore sistematico

Chemical Applications of Statistical Analyses

197 Visualizzazioni

article

1.12 : Incertezza: intervalli di confidenza

Chemical Applications of Statistical Analyses

2.6K Visualizzazioni

article

1.13 : Test di significatività: panoramica

Chemical Applications of Statistical Analyses

3.1K Visualizzazioni

article

1.14 : Identificare le differenze statisticamente significative: il test F

Chemical Applications of Statistical Analyses

921 Visualizzazioni

article

1.15 : Confronto dei risultati sperimentali: t-test di Student

Chemical Applications of Statistical Analyses

1.1K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati