When one or more data points appear far from the rest of the data, there is a need to determine whether they are outliers and whether they should be eliminated from the data set to ensure an accurate representation of the measured value. In many cases, outliers arise from gross errors (or human errors) and do not accurately reflect the underlying phenomenon. In some cases, however, these apparent outliers reflect true phenomenological differences. In these cases, we can use statistical methods to help determine whether to retain the outlier. A statistical method that can help us retain or reject outliers is called the Q-test. To perform the Q-test, we first arrange the values in a data set in order of increasing value. Then, we calculate the Q value by taking the ratio of the absolute difference between a data point and its adjacent data point. This Q value is then compared with the tabulated critical Q value at a chosen significance level and appropriate degrees of freedom. If the Q value equals or exceeds the reference Q value in the table, the data point is considered an outlier and therefore rejected from the data set. Here, it is reasonable to disregard the data point as an outlier because the magnitude of the deviation cannot be logically accounted for by random (indeterminate) errors. On the other hand, if the Q value is smaller than the reference value in the table, the data point should be retained, and the interpretation is that the difference between this data point and the rest of the data is within reasonable (statistical) expectation.

Tags
Gross ErrorOutliersQ testStatistical MethodsData PointsData SetCritical Q ValueSignificance LevelDegrees Of FreedomAbsolute DifferenceStatistical Expectation

Dal capitolo 1:

article

Now Playing

1.16 : Detection of Gross Error: The Q Test

Chemical Applications of Statistical Analyses

3.5K Visualizzazioni

article

1.1 : Unità SI: ridefinizione 2019

Chemical Applications of Statistical Analyses

933 Visualizzazioni

article

1.2 : Gradi di libertà

Chemical Applications of Statistical Analyses

2.7K Visualizzazioni

article

1.3 : Analisi statistica: panoramica

Chemical Applications of Statistical Analyses

3.6K Visualizzazioni

article

1.4 : Tipi di errori: rilevamento e minimizzazione

Chemical Applications of Statistical Analyses

988 Visualizzazioni

article

1.5 : Errore sistematico: errori metodologici e di campionamento

Chemical Applications of Statistical Analyses

1.0K Visualizzazioni

article

1.6 : Errore casuale

Chemical Applications of Statistical Analyses

527 Visualizzazioni

article

1.7 : Deviazione standard dei risultati calcolati

Chemical Applications of Statistical Analyses

3.3K Visualizzazioni

article

1.8 : Introduzione agli z Scores

Chemical Applications of Statistical Analyses

223 Visualizzazioni

article

1.9 : Incertezza: Panoramica

Chemical Applications of Statistical Analyses

240 Visualizzazioni

article

1.10 : Propagazione dell'incertezza da errore casuale

Chemical Applications of Statistical Analyses

342 Visualizzazioni

article

1.11 : Propagazione dell'incertezza da errore sistematico

Chemical Applications of Statistical Analyses

207 Visualizzazioni

article

1.12 : Incertezza: intervalli di confidenza

Chemical Applications of Statistical Analyses

2.6K Visualizzazioni

article

1.13 : Test di significatività: panoramica

Chemical Applications of Statistical Analyses

3.1K Visualizzazioni

article

1.14 : Identificare le differenze statisticamente significative: il test F

Chemical Applications of Statistical Analyses

932 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati