The extended Debye-Hückel equation indicates that the activity coefficient of an ion in an aqueous solution at 25°C depends on three partially interdependent properties: the ionic strength of the solution, the charge of the ion, and the ion size.

The activity coefficient value for an ion is close to one when the solution has almost zero ionic strength, i.e., when the solution shows close to ideal behavior. As the ionic strength of the solution increases from 0 to 0.1 mol/L, a decrease in the activity coefficient value is observed.

Solutions with an ionic strength above 0.1 mol/L are not well represented by the Debye-Hückel equation. In such solutions, the activity coefficient of an ion may exceed unity. The ionic strength of the solution is closely related to the charge of the ions present in the solution, thereby affecting their activity coefficient. For a particular ionic strength, ions with less charge have activity coefficient values higher than ions with a higher charge. In other words, the deviation from ideality is more pronounced for multiply charged ions than for singly charged ions.

Ions with similar charges often have similar activity coefficients. The dominant factor in the coefficient discrepancies here is the ion size parameter. Ion size describes the effective diameter of a hydrated ion, and even ions with similar charges tend to have different extents of hydration and therefore different ion sizes. Ions with similar charges can be hydrated to different extents, resulting in different effective diameters. These diameters are known as the ion size parameters. Ions with smaller ion size parameters deviate more from ideality, resulting in a lower activity coefficient than those with larger ion size parameters but the same charge.

Tags
Activity CoefficientDebye H ckel EquationIonic StrengthIon ChargeIon SizeIdeal BehaviorHydrated IonMultiply Charged IonsSingly Charged IonsEffective DiameterHydration ExtentCoefficient Discrepancies

Dal capitolo 2:

article

Now Playing

2.6 : Factors Affecting Activity Coefficient

Chemical Equilibria

608 Visualizzazioni

article

2.1 : Forza ionica: panoramica

Chemical Equilibria

971 Visualizzazioni

article

2.2 : Forza ionica: effetti sugli equilibri chimici

Chemical Equilibria

1.0K Visualizzazioni

article

2.3 : Termodinamica: potenziale chimico e attività

Chemical Equilibria

716 Visualizzazioni

article

2.4 : Termodinamica: coefficiente di attività

Chemical Equilibria

1.1K Visualizzazioni

article

2.5 : Equilibri chimici: ridefinire la costante di equilibrio

Chemical Equilibria

433 Visualizzazioni

article

2.7 : Equilibri chimici: approccio sistematico ai calcoli di equilibrio

Chemical Equilibria

503 Visualizzazioni

article

2.8 : Equilibri acido-base: definizione del pH basata sull'attività

Chemical Equilibria

469 Visualizzazioni

article

2.9 : Diagrammi a Scala: Equilibri Acido-Base

Chemical Equilibria

365 Visualizzazioni

article

2.10 : Diagrammi a Scala: Equilibri Redox

Chemical Equilibria

363 Visualizzazioni

article

2.11 : Diagrammi Ladder: Equilibri di Complessazione

Chemical Equilibria

270 Visualizzazioni

article

2.12 : Equilibri di solubilità: Panoramica

Chemical Equilibria

467 Visualizzazioni

article

2.13 : Equilibri di solubilità: prodotto ionico dell'acqua

Chemical Equilibria

848 Visualizzazioni

article

2.14 : Equilibri di Complessazione: Panoramica

Chemical Equilibria

472 Visualizzazioni

article

2.15 : Equilibri di Complessazione: L'Effetto Chelato

Chemical Equilibria

339 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati