Accedi

Consider two sources of sound, that may or may not be in phase, emitting waves at a single frequency, and consider the frequencies to be the same.

Two special sources may be considered when they are in phase. This can be easily achieved by feeding the two sources from the same source. An example would be synchronizing the two speakers by feeding them with the same source, such as the sound waves produced by a tuning fork. This setup ensures that the two sources have the same frequency and are in phase at the start. They then cause interference in the surrounding region.

However, the waves travel different paths to different points, and in general, the path lengths are different. Recalling that sound waves, or any traveling waves, depend both on space and time coordinates, it is easy to see that the difference in path lengths gives rise to a phase difference in the waves at different points. The interference pattern is affected by the path difference.

This setup explicitly explains that interference is not only caused by phase differences due to the initial phase difference or the difference in frequencies, but also due to the difference in path lengths. It has important implications for light waves.

Note, however, that the path difference would affect the interference pattern even if the two sources have a constant starting phase difference. If the two sources do not have a constant starting phase difference, but the phase difference fluctuates rapidly, then the interference would rapidly fluctuate between constructive and destructive at all points. The intensity would also change rapidly between the maximum and minimum at all points. Human ears are not perceptive to rapid changes in intensity and hear the average effect, which is simply the sum of the intensities of the two sources.

Tags
InterferenceSound WavesPhase DifferencePath LengthsConstructive InterferenceDestructive InterferenceFrequency SynchronizationSound SourceInterference PatternWave PropagationTuning ForkIntensity Fluctuation

Dal capitolo 17:

article

Now Playing

17.11 : Interference: Path Lengths

Sound

1.2K Visualizzazioni

article

17.1 : Onde sonore

Sound

7.1K Visualizzazioni

article

17.2 : Suono come onde di pressione

Sound

1.0K Visualizzazioni

article

17.3 : Percezione delle onde sonore

Sound

4.4K Visualizzazioni

article

17.4 : Velocità del suono in solidi e liquidi

Sound

2.7K Visualizzazioni

article

17.5 : Velocità del suono nei gas

Sound

2.8K Visualizzazioni

article

17.6 : Ricavare la velocità del suono in un liquido

Sound

433 Visualizzazioni

article

17.7 : Intensità del suono

Sound

4.0K Visualizzazioni

article

17.8 : Livello di intensità sonora

Sound

4.0K Visualizzazioni

article

17.9 : Intensità e pressione delle onde sonore

Sound

974 Visualizzazioni

article

17.10 : Onde sonore: interferenza

Sound

3.6K Visualizzazioni

article

17.12 : Onde sonore: Risonanza

Sound

2.5K Visualizzazioni

article

17.13 : Batte

Sound

436 Visualizzazioni

article

17.14 : Effetto Doppler - I

Sound

3.4K Visualizzazioni

article

17.15 : Effetto Doppler - II

Sound

3.3K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati