Accedi

The rebound hammer test, also known as the Schmidt hammer test, is a non-destructive technique for evaluating the hardness of concrete and, indirectly, the strength of concrete. It operates on the principle that the rebound of a spring-driven mass from a concrete surface correlates to the surface's hardness. The device comprises a mass within a tubular housing, a spring mechanism, and a plunger that strikes the concrete. Upon release, the energy imparted to the mass by the spring causes it to rebound, with the travel distance of the mass providing a rebound number. This number, however, is influenced by the presence of aggregates and voids beneath the surface and the angle of the hammer, making multiple readings necessary for accuracy.

On the other hand, the penetration resistance test, or Windsor Probe test, measures concrete strength by measuring the penetration depth of probes shot into the concrete. This test, which slightly damages the surface by creating small holes, is performed using a gunlike device that discharges the probes through three holes in a template affixed to the concrete. The depth of penetration is inversely related to concrete strength, with the average penetration of three probes providing the measure. This method is considered to yield a more accurate estimate of concrete strength than the rebound hammer as it assesses the material below the surface.

Dal capitolo 7:

article

Now Playing

7.18 : Non-destructive Tests for Concrete Strength

Strength of Concrete

82 Visualizzazioni

article

7.1 : Tensile Strength Considerations of Concrete

Strength of Concrete

84 Visualizzazioni

article

7.2 : Behavior of Concrete Under Compressive Load

Strength of Concrete

108 Visualizzazioni

article

7.3 : Porosity in Cement Paste

Strength of Concrete

84 Visualizzazioni

article

7.4 : Total Voids in Concrete

Strength of Concrete

66 Visualizzazioni

article

7.5 : Pore Size Distribution

Strength of Concrete

68 Visualizzazioni

article

7.6 : Microcracking in Concrete

Strength of Concrete

76 Visualizzazioni

article

7.7 : Water Cement Ratio

Strength of Concrete

65 Visualizzazioni

article

7.8 : Aggregate Cement Ratio

Strength of Concrete

173 Visualizzazioni

article

7.9 : Transition Zone

Strength of Concrete

55 Visualizzazioni

article

7.10 : Relation Between Tensile Strength and Compressive Strength of Concrete

Strength of Concrete

117 Visualizzazioni

article

7.11 : Fatigue Strength of Concrete

Strength of Concrete

123 Visualizzazioni

article

7.12 : Impact Strength of Concrete

Strength of Concrete

120 Visualizzazioni

article

7.13 : Abrasion Resistance of Concrete

Strength of Concrete

73 Visualizzazioni

article

7.14 : Reinforcements in Concrete

Strength of Concrete

54 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati